

1

The
People’s
Code
An analysis of public
engagement with the US
Federal Government’s Open
Source Pilot Program

Jake Rashbass | Mairi Robertson
Master in Public Policy Candidates,
2019

April 2019

A Policy Analysis Exercise (PAE) submitted in
partial fulfilment of the Master of Public Policy
at the Harvard Kennedy School.
The views represent those of the authors and
not those of Code.Gov, Harvard University, or
any of its faculty.

Faculty Advisor Professor David
Eaves

Seminar Leader Professor Thomas
Patterson

GLOSSARY

DOD Department of Defense

GSA General Services Administration

LISH Laboratory for Innovation Science at Harvard

OMB Office of Management and Budget

OSI The Open Source Initiative

OSS Open Source Software

PAE Policy Analysis Exercise

RfP Request for Proposal

SLOCs Software Lines of Code

EXECUTIVE SUMMARY

 THE PROBLEM
In August 2016, the Obama Administration launched the Federal Source Code
Policy. It aimed to promote the use of open source software in the federal government by
requiring that federal agencies:

1. Share all custom source code with one another, to reduce duplicative software
procurement spending.

2. Share 20% of their custom source code with the public in an ‘Open Source
Pilot Program,’ to allow developers outside government to contribute to government
software projects and to allow taxpayers to reuse the code that they pay for.

Code.Gov – our client – was created by the White House to lead this policy. Part of
their brief was to figure out how to stimulate public engagement with federal source code
released through the Open Source Pilot Program.

The Pilot Program will expire in August 2019. Before that deadline, Code.Gov
must decide what changes – if any – they should make in the next iteration of the
policy to maximize public engagement with the government’s open source code.

1

2

3

METHODOLOGY

‘Big data’ quantitative analysis of almost 200,000
engagements with over 5,000 different federal open source
projects since 2008

Qualitative analysis of 10 expert interviews, 2 focus groups
involving 12 federal employees, and literature review

+

RESEARCH
QUESTIONS

To what extent did the Pilot Program increase
user engagement with federal source code –
and how did users engage?

Which factors drove user engagement with
federal source code?

What changes should Code.Gov make – if any
– to further boost user engagement in the
second iteration of the Program?

FINDINGS AND RECOMMENDATIONS

At the aggregate level, the Pilot Program increased neither the
rate at which federal open source projects were created nor the
rate at which users engaged with those projects. However, a small
number of projects were highly successful: The top 0.04% of projects
accounted for over 40% of engagement. They are followed by a long tail of
projects which had little-to-no user engagement.

Nine characteristics drive user engagement with public source
code, including a project’s discoverability, reuse potential, and
documentation. We combine these into the ‘DREAM CODE’ framework.

1

2

If Code.Gov decides to turn the Pilot into a permanent program
after the August 2019 expiry date, it should make four changes to
the program assuming that it seeks to maximize user engagement:

a. Articulate the purpose of the policy clearly. Today, there is
confusion amongst agencies and industry about whether user engagement is
an objective of the program. This impacts how it has been implemented.

b. Adopt a ‘default to open’ policy requirement. Today, agencies are
only required to release 20% of their code to the public. This is difficult to
enforce and means agencies don’t always release code that would most drive
public engagement.

c. Introduce additional programmatic support to agencies. Many
agencies do not have the institutional expertise or capacity to meet the
requirements of the Federal Source Code Policy. This impacts their ability to
drive user engagement. Code.Gov should ensure they have additional support
– for example, mandating that agencies hire community engagement
managers – to rectify this.

d. Investigate outstanding questions raised by this report. In our
research, we have uncovered important questions – for example, “Who are the
users that engage with federal source code?” - that we were unable to answer
due to citizenship and technical constraints. Code.Gov should prioritize
finding answers to these questions as it considers designing the next stage of
the Federal Source Code Policy.

3

CONTENTS

1. Introduction 1

Federal Software Procurement 2

The Case for Open Source 2

Reasons for Caution 4

The (Original) Problem 4

The Policy Response 5

The Role of This Report 6

2. Methodology 7

Overview 8

Quantitative Analysis 9

GitHub and User Engagement 9

Our Databse 11

Limitations of Approach 11

Dataset Limitations 11

Identifying Causality 11

Internal Engagement 12

Qualitative Analysis 12

Constraints on Recommendations 12

3. Quantitative Analysis 15

Summary of Quantitative Findings 16

Did the Federal Source Code Oolicy increase the number of repositories? 17

Did the policy increase engagement with federal repositories? 17

What is the distribution of engagement by repository? 17

Which repositories did the public most engage with? Which agencies over-perform? 18

How does the public engage with these repositories? 19

How responsive are agencies to engagement? 19

4. Qualitative Analysis 24

Summary of Qualitative Findings 25

Notes on Methodology 26

The DREAM CODE Framework 26

Discoverability 26

Reusability 27

End user 27

Applicability elsewhere 28

Maintenance 29

Community building 29

Open origins 31

Documentation 31

Explicit licensing 32

5. Recommendations 33

Define the objective of federal OSS 34

Amend the “20% requirement” 35

Evaluation methodology 36

Options 36

Recommendation 37

Provide programmatic support for agencies 40

Options 41

Recommendation 43

Investigate open questions raised by this research 44

How does engagement vary by licensing type? 44

How does reusability correlate with engagement? 44

Who is engaging with federal repositories? 44

What financial savings has the pilot program gener ated? 45

Policy archetypes 45

Government procurement 45

In-government innovation 45

User contributions 46

Third-party reuse 46

Appendix 47

A. Relevant section from Federal Source Code Policy 47

B. Raw code used to generate data 49

C. Rankings of agencies by engagement 52

D. Rankings of agency responsiveness 54

Bibliography 56

Works cited 56

Works consulted 59

Image credits 61

1

1. INTRODUCTION

The US federal government is the world’s largest single purchaser of code, 1
spending over $6 billion on software every year.2 This software is critical for the
federal government: It forms the backbone of everything from rocket launches to
disease control programs.

The challenge for policymakers is how to provide this technological capacity while managing
costs. One part of the solution is Open Source Software (OSS), which powers 90% of the world’s
computer applications according to estimates.3 In this section, we provide an overview of OSS
and its role in federal government software purchases. We also explain why the Obama
Administration decided to promote OSS through 2016’s Federal Source Code Policy – and how
this report seeks to inform the design of the Policy’s future.

1 Kesan, Jay P. & Shas, Rajiv C. Shah, Shaping Code, Harvard Journal of Law & Technology, Volume 18, Number 2 Spring 2005 p
373.

2 ‘Improving the Acquisition and Management of Common Information Technology: Software Licensing’. Office of Mgmt. & Budget,
Exec. Office of the President, June 2, 2016. p. 1. Available at:
https://obamawhitehouse.archives.gov/sites/default/files/omb/memoranda/2016/m-16-12_1.pdf.

3 Zorz, Zeljka. “The Percentage of Open Source Code in Proprietary Apps Is Rising.” Help Net Security, 22 May 2018,
www.helpnetsecurity.com/2018/05/22/open-source-code-security-risk/.

2

FEDERAL SOFTWARE
PROCUREMENT

The federal government’s software
purchases can take one of three forms:

x Proprietary, or ‘closed source
software,’ meaning the organization
from which the code was procured
retains the intellectual property
rights for the code;

x Open source, meaning the
copyright holder grants anyone the
right to use, alter, and distribute the
code for any purpose; or

x Mixed source, in which some of the
code – or accompanying support
services – is provided on a
proprietary basis while the
remainder is open source.

An additional dimension – and which is not
mutually exclusive from the categories above
– is custom code. This refers to situations
in which the federal government orders
bespoke solutions to be developed for its
technical requirements. These are usually
either proprietary or mixed source solutions,
meaning they incur large costs for the
taxpayer. However, they can also be
developed as OSS.

THE CASE FOR OPEN SOURCE

Proponents of open source cite five
major reasons for using OSS in the
federal government.4

First, proprietary software is usually
more expensive. Licenses for proprietary

4 These are compiled from our series of 10 interviews, two
focus groups, and extensive literature review.

5 “Proprietary Software vs. Open Source - The Hidden
Costs.” Trellon, trellon.com/content/blog/proprietary-
software-vs-open-source-hidden-costs.
6 U.S. Department of Defense. “Contracts for January 11,
2019.” U.S. DEPARTMENT OF DEFENSE,

software are generally priced on an annual
basis and are contracted over multiple years.
This means that organizations are locked-in
to significant software expenditures over
long periods. Organizations that use
proprietary solutions are often also required
to pay for on-going maintenance and
support. Support is often charged regardless
of use, meaning that even if the purchaser
does not need significant support, they pay
for it. This can cost ~20% of the initial
software price and is charged annually. 5

Together, these recurring license and
maintenance costs add up to the $6bn figure
cited earlier. Individual software and
support contracts can be significant outlays
for federal agencies. For example, the US
Department of Defense (DOD), Coast Guard,
and intelligence community pay ~$350m per
year to Microsoft Enterprise Services for
licensing and support – just one of those
agencies’ many IT procurement contracts.6

OSS solutions are often – although not
always – cheaper. If they already exist and
don’t need to be built from scratch, they are
available for free, meaning there is no initial
outlay. Moreover, they do not require
licenses for ongoing use. While there may be
maintenance costs – for example, hiring
programmers to develop additional
capabilities in the software – these are paid
on an as-needed basis.

The US federal government has more than
42,000 different software licensing and
support contracts. 7 This almost certainly
means there is excessive spending on
licenses for software that could be replaced
with OSS. There is also excess spending on
24/7 support that is not fully utilized. While

dod.defense.gov/News/Contracts/Contract-
View/Article/1730557//.

7Kuldell, Heather. “It's Official: MEGABYTE Act Signed into
Law.” Nextgov.com, Nextgov, 28 Nov. 2017,
www.nextgov.com/cio-briefing/2016/08/its-official-
megabyte-act-signed-law/130391/.

3

major IT infrastructure such as Office 365
will likely continue to be bought on a
proprietary basis, OSS solutions could
replace a non-trivial proportion of those
42,000 transactions.

Second, OSS prevents vendor lock-in.
When organizations purchase proprietary
software, contract terms typically force the
organization to rely on the original developer
for modifications, support, and updates. This
puts the developer in a powerful position:
They can charge significant sums for bespoke
service. This is especially a problem in the
public sector, where generic solutions are
often tailored to suit the government’s
requirements around scale, security, and
specificity. It also gives the vendor leverage
in negotiations for future contracts:
migrating from one software platform to
another is difficult, particularly in
government where service outages can have
significant consequences. The result is that
government IT procurement managers may
be reluctant to seek alternative solutions.

OSS eliminates much of this problem.
Because the code is public, any developer –
whether the original developer, government
employee, or an external consultant – can
make changes. This allows government to
hire or contract developers who are cost-
efficient and can do the task at hand. OSS
also provides an insurance policy against the
extreme case in which the original developer
goes out of business.

8 From the most recent annual Coverity Scan, which looks at
approximately 1 billion lines of open source and proprietary
code. Summary available at Rubens, Paul. “Open Source
Code Contains Fewer Defects, But There's a Catch.” CIO,
CIO, 18 Nov. 2014, www.cio.com/article/2847880/open-
source-code-contains-fewer-defects-but-theres-a-catch.html.

9 See “Open Data | Open Data NY.” State of New York,
data.ny.gov/ and
“Data.ca.gov.” Data.ca.gov, data.ca.gov/.

10 Mill, Eric, et al. “Digital Service Delivery | How We Built
Analytics.usa.gov.” 18F, 19 Mar. 2015,
18f.gsa.gov/2015/03/19/how-we-built-analytics-usa-gov/.

Third, OSS improves the reliability
and security of software solutions.
The open source method is a form of ‘peer
review,’ in which developers from different
industries and countries can improve
software and check it for bugs. Having more
eyes on code generally improves its quality:
Studies find that OSS has fewer bugs, on
average, than proprietary software. 8 The
additional review and vetting also means it is
easier to verify the security of OSS, since
proprietary software must be vetted by the
developer – leaving the end-user reliant on a
single actor to test security concerns.

Fourth, OSS can be easily shared. A
federal agency that develops an OSS solution
can publish the code online, meaning that
other agencies – not to mention state and
local governments, non-profits, and civil
society – can also use the solution. The states
of California and New York, for example,
have used the Data.Gov source code as part
of their own statewide open-data resources.9
Similarly, the source code behind a federal
government analytics website which
presents a public dashboard of web traffic on
government websites, Analytics.Usa.Gov,
has been reused by several state and local
governments across the United States since
being open sourced.10

This helps reduce the duplication of federal
software procurement. Experts estimated in
2016 that almost one-third of the federal
government’s $6bn in software spending was
duplicative or wasteful.11 One way to avoid
this situation is to catalogue software

11 Prior to the introduction of the MEGABYTE Act in late
2016. Some of this duplicative spending may since have been
reduced – it is too early to tell how successful the policy has
been. Please see Goldstein, Phil, “Federal Agencies Will Be
Required to More Accurately Track Software Licenses.”
Technology Solutions That Drive Government, 24 Aug.
2016, fedtechmagazine.com/article/2016/08/federal-
agencies-will-be-required-more-accurately-track-software-
licenses.

4

licensing agreements across government, so
that agencies can avoid procuring software
that has already been purchased elsewhere.12
Another is to encourage the use of OSS, so
that even if a federal agency fails to recognize
that another agency has already procured
their desired solution, they are not spending
additional money on it.

Fifth, OSS is fast. Projects developed in
the open from the outset benefit from the
myriad of potential contributors in the open
source community. Patches and bug fixes can
be created by anyone, and don’t require the
organization to wait for the original vendor
to work on it. This means that the
development cycle is generally shorter and
more agile compared to proprietary
solutions.

This benefit is particularly important in the
public sector. The rapid prototyping that
comes with agile software development is
easier in an OSS context, meaning that
agencies can test and adjust software prior to
deploying it in government services. If there
are bugs after an agency has adopted an OSS
solution, the patching process is more rapid
– reducing the interruption to government
services.

REASONS FOR CAUTION

It is important to note that OSS is not
a silver bullet for all government
software procurement.

There are cases where proprietary solutions
make more sense for federal agencies, and
even advocates of a ‘default to open’ policy13
usually accept that there are cases where
exceptions should be made. For example,
this includes cases where:

x Sharing source code could create
national security or individual

12 The MEGABYTE Act of 2016 attempted to do this.

13 i.e. all government software procurement should be open
source.

privacy risks. This could apply to
some military applications, where the
federal government may have a
legitimate interest in not sharing
software with other actors;

x Sharing source code might damage
an agency’s systems, personnel or
programs;

x The government needs guaranteed
and on-call support; or

x The law restricts source code being
shared, for example under Export
Asset Regulations or International
Traffic in Arms Regulation.14

This report does not argue that OSS should
be used in all circumstances. Instead, the
underlying assumption is that OSS is
underutilized by federal agencies given the
benefits of this approach.

THE (ORIGINAL) PROBLEM

Until August 2016, the procurement
landscape described above presented
two challenges for the Federal
Government.

First, purchases of custom code by
one agency were in many cases
duplicative. Agencies would order bespoke
software when code procured by other
agencies could have filled the same
requirements. Without any impetus to share
custom code purchases between agencies,
the federal government was double-
spending on technical requirements. This
situation led to the ~$2bn in excess spending
cited earlier in this chapter.

Second, purchases made by the
federal government are – on some
level – the property of the taxpayers

14 These examples are specifically cited in OMB’s Federal
Source Code Policy: “Federal Source Code Policy.”
Exceptions to Government Code Reuse,
sourcecode.cio.gov/Exceptions/.

5

who fund those purchases. However,
taxpayers were not reaping the benefits of
that code. In the words of the Obama
Administration, the procurement process
was wrongfully hiding “the people’s code.”15
This meant the private sector and civil
society could not utilize publicly-funded code
for commercially- and economically-
productive purposes.

THE POLICY RESPONSE

In August 2016, the Obama
Administration announced the
‘Federal Source Code Policy.’

It created a new team within the Office of
Management and Budget (OMB) in the
Executive Office of the President, Code.Gov,
to spearhead this policy. Code.Gov is the
client for this PAE. This team was transferred
over the course of our research to the General
Services Administration (GSA).

The Federal Source Code Policy contains two
pillars that address the problems laid out
above. These are:

1. Interagency requirement: Any
new custom code developed by or for
the federal government must be
made available for all federal
agencies to use; and

2. Public requirement: At least 20%
of custom code must be released as
open source software to the general
public (Appendix A).

The public requirement contains
complexities that are not immediately
obvious. For example, the policy does not
stipulate how to measure ‘20%’ of code:
‘Volumes’ of source code are not easily
quantifiable, and the policy states that
agencies can devise their own metrics to

15 “The People's Code.” National Archives and Records
Administration, National Archives and Records
Administration,
obamawhitehouse.archives.gov/blog/2016/08/08/peoples-
code.

determine whether they have shared 20% of
code. Potential metrics could include the
total number of projects, files, Software
Lines of Code (SLOCs), compiled data size,
contract actions, or dollar value. Opting for
one metric over another could produce very
different results.

The 20% requirement also means that
agencies are incentivized the release the code
that is ‘easiest’ to open source, rather than
that which maximizes public benefit.
Although the policy states that agencies
should release code which it “considers
potentially useful to the broader
community,” there is little guidance around
what this means in practice.16 Our empirical
analysis in Chapter 3 – which finds that there
has been little public engagement with
federal source code released under the policy
– suggests that this vagueness has affected
the success of the policy.

Given these complexities – and the federal
government’s relative lack of experience in
OSS – Code.Gov decided to pilot the second
pillar of the Federal Source Code Policy in
order to test whether it could succeed and to
understand how to improve its performance.
The Open Source Pilot Program (‘the Pilot
Program’) was launched in August 2016, to
last for three years.

Today, the end of the Pilot Program – August
2019 – is rapidly approaching. Before the
pilot ends, Code.Gov must decide whether to
turn it into permanent policy – and, if so,
what alterations should be made.

16 “Federal Source Code Policy.” Open Source Software,
sourcecode.cio.gov/OSS/.

6

THE ROLE OF THIS REPORT

Our research provides empirical data
and qualitative analysis to aid
Code.Gov in its decision about
whether to continue the Pilot Program
– and, if so, how it should do so.

We analyze how the public has engaged with
the code which has been open sourced by
federal agencies.17 Because the Pilot Program
was established to give the public access to
federal government code, understanding
whether the public has indeed engaged with
code released in the Pilot is vital for
measuring the Pilot’s success.

We also investigate the reasons driving the
success of the OSS projects that have
received the most engagement. We find nine
characteristics that are linked with
successful OSS projects.

To this end, this PAE has two major
analytical components:

1. A quantitative analysis of the
public’s engagement with open

source code released by the
federal government. We
investigate the extent to which the
Pilot Program led to an overall
increase – or otherwise – in
engagement with federal OSS
projects. We also analyze which
agency sub-departments and projects
received the most engagement.

2. A qualitative analysis of the
repositories that receive the
most engagement. We draw on
expert interviews, focus groups with
federal employees, and a literature
review to understand why certain
repositories and agencies have
outperformed others.

Based on these analyses, we provide a set of
recommendations about how to improve
public engagement with source code released
by the federal government. This includes
codifying the best practices used by the top-
performing federal repositories so that they
can be applied to other federal repositories.

17 We do not address the first pillar of the Federal Source
Code Policy, which covers interagency code sharing. This is
because as government outsiders, we can only access public
information and do not have the capacity to communicate

with every federal agency to provide a rigorous and useful
analysis of agencies’ experience of the Pilot Program.

7

2. METHODOLOGY

We have developed an original and substantial dataset for this analysis. It includes
data for almost 200,000 interactions with >5,000 different OSS projects owned by
the 23 federal agencies that the Federal Source Code Policy applies to.18 This is the
first time such a dataset has been developed and made available to GSA.

To understand how the public has engaged with source code shared by the federal government,
we turned to GitHub, an online platform where the vast majority of federal agencies’ open source
code is located.19 We created custom code to scrape GitHub for information about federally-
owned projects.20 In this section, we explain in more detail how the dataset was developed and
what information it contains. We also outline some of the limitations it has. Finally, we explain
how the dataset is combined with our qualitative analysis to produce the recommendations at the
end of this report.

18 Those covered by the Chief Financial Officers Act of 1990.

19 From multiple interviews including Code.Gov team management and staff.

20 A copy of this code is provided in Appendix B. It was developed with the support of Joseph Castle (of Code.Gov) and Froilan
Irizarry (formerly of Code.Gov, and now of GitHub).

8

OVERVIEW

This report analyzes the success of the
Pilot Program to date and provides
recommendations about how to
improve it going forward.

To do this, we combine a ‘big data’
quantitative analysis with qualitative
research. In the former, we develop an
original dataset to measure the amount of
engagement with federal OSS projects to
date. This is the focus of Chapter 3. We find
that at the aggregate level, the rate of
engagement with federal open source has not
increased since the policy came into place.

However, some projects have performed
well. We seek to understand why these
projects out-performed their peers in order
to identify ‘best practices’ that could be
adopted in other federal OSS projects. This is
the subject of Chapter 4. The theory
underlying this approach is that adopting
these best practices would help increase

aggregate engagement with federal OSS
projects.

To identify these best practices, we
conducted a wide-ranging review of
qualitative sources including expert
interviews, focus groups with federal
employees, and a literature review. From
these sources, we distilled a list of the
characteristics which drive successful
government OSS projects.

Finally, we produce a series of
recommendations about how the Pilot
Program should be changed after August
2019 so that public engagement with federal
OSS projects increases. These are included in
Chapter 5. The recommendations are based
on what we learnt from our conversations
during the qualitative component of our
research.

An illustration of the methodology
underpinning this report is provided below
in Figure 1.

Figure 1: Overview of methodology

9

QUANTITATIVE ANALYSIS

GITHUB AND USER
ENGAGEMENT

GitHub is the leading platform for
software developers to share code and
to collaborate on it.

Every federal agency has a GitHub account –
and in some cases multiple accounts – where
they share source code projects they have
developed or commissioned. Each project is
called a “repository” (Figure 2). In this way,
other GitHub users, who range from
software developer professionals to
amateurs and students, can discover and
interact with federal code for their own use.
Figure 3 shows an example result of what the
code in a repository looks like when
developed into an application.

There are multiple ways through which users
can engage with another user’s or
organization’s repositories. For the purposes
of this analysis, we have captured data on
four forms of engagement. These are:

x Stars – A ‘star’ is created when a
user marks a repository they find
interesting. Starring a repository
allows the user to keep track of its
developments, discover similar
content on GitHub, and show
appreciation for the content to the
repository owner. In the context of
our research, stars can be interpreted
as users marking repositories shared
by the federal government that they
find particularly interesting and/or
useful.

x Forks – A ‘fork’ is created when a
user makes a personal copy of
another user’s repository for their

own account. In the context of our
research, this means that a user is
directly copying a federal repository
for their own use.

x Issues – An ‘issue’ is created when a
user provides feedback on a
repository. This feedback could mean
reporting a software bug, suggesting
an improvement, or asking a
question. Repository maintainers
and other users can then respond to
the issue. An issue is marked as
‘closed’ once it has been resolved. In
the context of our research, issues are
a way for repository owners to gain
user feedback on the repository.

x Pull requests – A ‘pull request’ is
created when a user submits a
proposed change to a repository. This
differs from ‘issues’, in that the user
actually submits a proposed
alternative version of the code (rather
than simply alerting the owner to a
potential flaw in the code). With pull
requests, the repository owner can
then either accept or reject the
proposed change. In the context of
our research, pull requests are a
means for repository owners to
directly incorporate contributions
from other GitHub users.

In this PAE, we define ‘public engagement’ as
the total number of stars, forks, issues, and
pull requests that GitHub users (the “open
source community”) have generated in their
interactions with open source code shared by
the federal government on the GitHub
platform.

10

Figure 2: The home page for NASA's library of repositories

Figure 3: One of NASA's open source applications

11

OUR DATABASE

Our database contains information on
every engagement that GitHub users
have made with each repository in the
database, along with the repository’s
owner agency, and creation date.

A summary of the database is included in
Table 1.

This dataset represents the first significant
‘big data’ analysis of the Federal Source Code
Policy. McKinsey & Company defines ‘big
data’ as a dataset “whose size is beyond the
ability of typical database software tools to
capture, store, manage, and analyze.”21 The
complicated process required to generate
this dataset – which included writing
original script that ‘scraped’ data from
GitHub – and the almost 200,000
datapoints it contains means that it falls
within this definition.

This is significant. Until now, Code.Gov has
only had access to ‘supply side’ information
about the policy – that is, data that
summarizes the percentage of federal
agencies complying with the Federal Source
Code Policy. 22 This dataset improves the
ability of the Code.Gov team to understand
the ‘demand side’ – specifically, the trends
and drivers of public engagement with
federal source code.

LIMITATIONS OF APPROACH

Our approach to this analysis is novel
and includes a large trove of original
data that Code.Gov has not had until
now. Nevertheless, there are some
limitations to our approach.

21 McKinsey and Company, Big data: The next frontier for
innovation, competition, and productivity (2011) Page 1.
Available at
https://www.mckinsey.com/~/media/McKinsey/Business%
20Functions/McKinsey%20Digital/Our%20Insights/Big%2
0data%20The%20next%20frontier%20for%20innovation/M
GI_big_data_exec_summary.ashx

22 For example, the General Services Administration
maintains a dashboard on federal agency compliance with

We do not believe these limitations seriously
threaten the robustness of our results or
recommendations. We lay out these
limitations below so that the Code.Gov team
can most effectively understand and utilize
our recommendations.

DATASET LIMITATIONS

Although the dataset we are working
with is substantial in size and original
in nature, it is not exhaustive.

We have captured data for over 5,500
repositories – over 90% of those that GitHub
has labelled as belonging to federal
agencies.23 However, GSA reports that there
are 8,753 federal repositories in existence
(including on other platforms).24

We do not view this as a major impediment
for our research: Many of the additional
GSA-listed repositories are effectively
inactive and in any case are not discoverable
to members of the public.

Moreover, even if this was not the case our
dataset would be sufficient for the analytical
task at hand. It provides significant insight
into which repositories outperform their
peers. This allows us to qualitatively assess
the characteristics that drive the success of
top-performing repositories, and thereby
produce recommendations about ways to
improve other federal repositories.

IDENTIFYING CAUSALITY

We cannot conclusively establish
causality using our dataset.

the Federal Source Code Policy. This is available at
http://gsa.github.io/github-federal-stats/.

23 We were not able to obtain data on the remaining <10%
due to limitations with our GitHub scraping code.

24 As of February 6, 2019. Data from GSA GitHub Federal
Stats Dashboard, available at http://gsa.github.io/github-
federal-stats/#tabs-1.

12

A key question in our quantitative analysis is
whether the Pilot Program led to an increase
in the amount of engagement with federal
repositories. To do this, we track the number
of engagements with federal repositories
over time. However, correlation does not
mean causation – we cannot conclude that
changes in total engagement following
August 2016 were the result of the Pilot
Program alone.

We have tried to control for this by basing
our analyses on a comparison between the
two years prior to the launch of the Pilot
Program and the two years after it. This
creates a sort of ‘counterfactual.’ It is
imperfect, because the increasing ‘tech-
savviness’ of government means that the two
periods did not have identical environmental
considerations.

Nevertheless, we contend that the
environment for digital government in 2014-
16 and 2016-18 were reasonably similar. This
means that while total causality cannot be
established, approximate conclusions about
the Pilot Program’s effect on total
engagement can be made.

INTERNAL ENGAGEMENT

Our database does not contain
information on which users were
responsible for which engagements.

This means that some portion of the
engagements we count likely come from
other federal employees, including those
within the teams responsible for a particular
repository. For example, two federal
employees responsible for an agency
repository might use GitHub functions like
starring and pull requests to work on projects
(“intra-agency’ engagement”). Our data
would count these interactions. It would also
include federal employees from other
agencies who engage with that repository
(“inter-agency engagement”).

We do not view this as a major impediment
to our analysis. First, while we have no data
quantifying the share of engagement that is

intra-agency, anecdotal evidence gathered
through the interviews we carried out for our
qualitative analysis suggests it is not a large
share. Second, inter-agency engagement is
consistent with the Federal Source Code
Policy’s mission to share federal source code
more widely. It is less of an issue if this is
included in the counts of total engagement.
Moreover, anecdotal evidence gathered
through our interviews also suggests this is
not the majority of total engagement with
federal repositories.

QUALITATIVE ANALYSIS

After identifying the top-performing
repositories, we explore the reasons
for their success.

The objective is to identify best practices in
repository management that could lead to
increased public engagement with federal
source code. To do this, we conducted
interviews with 10 subject matter experts
from the public, private, and non-profit
sectors; ran 2 focus groups with a dozen
federal employees; and reviewed the
academic and industry literature.

We aggregate our findings into a new
framework of nine best practices for
achieving user engagement – the ‘DREAM
CODE’ framework.

Our findings were iterated and confirmed
through subsequent interviews and focus
groups. We were unable to conduct a
multivariate regression to statistically test
our framework because we do not have the
technical expertise to evaluate, for example,
the quality of code that federal agencies have
shared.

CONSTRAINTS ON
RECOMMENDATIONS

There are several important questions
that our research consciously does not
answer.

These are outlined in Chapter 5
(Recommendations). They include questions

13

such as “Who are the types of users engaging
with federal repositories?” and “To what
extent is the type of license used for a
repository correlated with engagement?”

The open questions are the result of
constraints that we face in our role as
external researchers. These constraints
include the facts that:

We are neither citizens of the US nor
federal government employees. This
restricted our access to data and interviews
focusing on the within-agency and inter-
agency aspects of the Federal Source Code
Policy.

This restriction manifests in several
capacities. First, it informed our decision to
focus only on the second pillar of the Federal
Source Code Policy. Second, it means that
our recommendations around institutional
changes – i.e. what resources should be
provided to support open source in
government and the organizational changes
needed to deliver it – are brief. This is
because we were unable to spend significant
time talking to agencies about their internal
processes.

We are not professional coders. The
authors of this report have professional
experience in technology and its use in the
public sector. However, neither of us are
programmers. This has implications for
some of the findings in Chapter 4
(Qualitative Analysis). For example, a
finding in that section is that the ‘modularity’
of code – that is, how easily components can
be used independently – affect the
community’s willingness to engage with it.
We accepted that this relationship exists
based on multiple expert interviews and an
extensive review of the literature.
Nevertheless, the fact that we are not coders
meant we were unable to validate it
empirically. Ideally, we would have analyzed
a random sample of repositories from each
quintile of our repository database and
tested the hypothesis that lower-performing
repositories had were less modular. We do

not have the expertise to judge what code is
modular and what is not, however.

We are collecting data from GitHub’s
external API. As has been discussed, we
worked with Code.Gov to develop a custom
scraping tool that could pull data from
GitHub about the performance of federal
repositories. However, this tool was not able
to pull data on the users engaging with these
repositories. This is partly due to restrictions
in the GitHub API (which we believe is in
place, partly, to manage privacy concerns).
The implication of this is that we were unable
to conduct an analysis of the type of users
engaging with federal repositories. The
policy implications of a user base primarily
consisting of expert coders (e.g. contractors
who are trying to build relationships with
government) are vastly different to those of a
user base that includes a large swathe of
amateur coders or organizations pulling
federal projects for their own internal use.

It is important to flag these limitations
upfront and contextualize the
research that follows. While our findings
are substantial and robust, they raise
additional questions that we were unable to
answer in this project. In other words,
through this project we have generated a
number of ‘known unknowns.’ We list these
in Chapter 5 (Recommendations) and
outline research methods that Code.Gov may
be able to use in order to generate answers
on them.

14

Table 1: Overview of dataset

No. federal agencies 23

No. sub-agencies and organizations 130

No. repositories 5,672

Time period covered Dec 16, 2009 to Jan 26, 2019

Total no. engagements 191,719

No. forks 58,259

No. issues 23,455

No. pull requests 27,176

No. stars 82,829

15

3. QUANTITATIVE ANALYSIS

The Pilot Program has had mixed success since its inception in August 2016.
Our findings show that, at the aggregate level, there was no significant
increase in the rate of engagement with federal repositories. However, there
are a small number of repositories which performed very strongly and
received substantial engagement. This suggests that some agencies and some
projects have ‘figured out’ how public open source projects can be effectively
initiated and managed.

In this Chapter, we pose six questions that are critical in understanding the effectiveness
of the Pilot Program to date and which will be central to Code.Gov’s decision-making
about how to move forward. We developed these questions in consultation with
Code.Gov.

Box 1

SUMMARY OF QUANTITATIVE FINDINGS

We used our dataset to answer six questions. These questions are critical in
understanding the effectiveness of the Pilot Program to date and, we believe, are central
to Code.Gov’s decision-making in designing the future of the policy.

i. Did the Federal Source Code Policy increase the total number of
repositories created?

The Pilot Program did not accelerate growth in the number of publicly-available
open source projects. The number of repositories grew at 5% per month in the two
years preceding August 2016, compared with 2% in the following two years.

ii. Did the Federal Source Code Policy lead to increased engagement with
federal agency repositories?

The Pilot Program did not increase the rate of engagement with federal
repositories. Total engagement grew at 8% in the two years preceding August 2016,
compared with 4% in the following two years.

iii. What is the distribution of engagement by repository?

A small number of high-engagement repositories drove a substantial portion of
engagement. The 20 most-engaged with repositories accounted for over 40% of
engagement.

iv. Which repositories do the public most engage with? Which agencies
over-perform?

A small number of agencies are responsible for the highest-performing
repositories. NASA and the DOD contribute the most repositories to the top 20
highest-performing repositories.

v. How does the public engage with these repositories?

Stars and forks count for most engagement. They were worth 54% and 40% of
engagements respectively.

vi. How responsive are agencies to engagement?

Agencies are somewhat responsive to engagement. On average, 96% of pull
requests were acted upon and 63% of issues were closed. However, there was
substantial variation amongst agencies on these metrics.

17

I. DID THE FEDERAL SOURCE
CODE POLICY INCREASE THE
NUMBER OF REPOSITORIES?

It is unclear whether the policy had an
impact: While the number of
repositories increased after the
introduction of the Pilot Program, the
rate at which they increased did not.

As Figure 4 shows, the cumulative total
number of repositories increased from
~3,000 repositories in August 2016 to
~5,000 two years later. This implies that the
average number of new repositories per
month increased from 85 in the two years to
August 2016 to 88 in the two years following
it.

However, the growth rate of total federal
repositories fell after the Pilot’s introduction.
Total repositories grew at an average of 5%
per month in the two years to August 2016,
compared to 2% in in the subsequent period.

It is possible that the growth rate would have
tapered off even more had the Pilot Program
not been in place. For that reason, we cannot
conclude that it had no effect on the number
of repositories. We can, however, say that the
Pilot Program failed to produce a substantial
or sustained increase in the growth rate. At
best, it led to a continuation of pre-existing
growth which may not have otherwise
occurred – however, it was not a boost to
growth.

II. DID THE POLICY
INCREASE ENGAGEMENT
WITH FEDERAL
REPOSITORIES?

There was no sustained increase in
engagement with federal repositories.

Engagement jumped when the Policy was
announced (Figure 5). This spike was driven
by stars and forks – which is encouraging in
terms of the Pilot Program’s objectives, since
stars and forks imply that a user either has
interest in following the development of
federal source code or in using that code
themselves.

However, the spike only lasted a month. In
the two years following the policy’s
announcement, total engagements grew at
an average of 4% per month, compared to 8%
in the two years prior to August 2016. As in
the previous analysis, it is possible that
growth would have slowed even further had
the Pilot Program not been introduced. This
means the strongest conclusion we can make
is that the Pilot Program did not lead to a
sustained increase in the rate of engagement
with federal repositories.

III. WHAT IS THE
DISTRIBUTION OF
ENGAGEMENT BY
REPOSITORY?

Engagement with federal repositories
is very skewed.

As Table 2 shows, a small number of
repositories counts for most public
engagement with federal repositories –
specifically, 1% of federal repositories
account for 51% of engagement. The mean of
this distribution is 34 engagements per
repository over the total period, and the
median is 6.

The implication of this is that a small number
of repositories significantly outperformed
most federal repositories hosted on GitHub.

18

Table 2: Total engagements per repository
For entire period, 2008-2019

No. engagements No. repositories
>10,000 1

5,001 to 10,000 1
1,001 to 5,000 14

501 to 1,000 31
101 to 500 228
51 to 100 208
11 to 50 957
2 to 10 1,986

1 577
0 1,169

IV. WHICH REPOSITORIES DO
THE PUBLIC MOST ENGAGE
WITH? WHICH AGENCIES
OVER-PERFORM?

The top 20 repositories – which we call
‘Superstar Repositories’ – are worth
41% of all engagement.

The 5 top-ranking Superstar Repositories
are:

1. NASA’s openmct, which “is a
next-generation mission control
framework for visualization of
data on desktop and mobile
devices…[that] could be used as
the basis for building applications
for planning, operation, and
analysis of any systems producing
telemetry data.”;

2. DOD’s Dshell, which is an
“extensible network forensic
analysis framework”;

3. DOD’s SIMP, or System Integrity
Management Platform, which

can be used to build an
organization’s digital network
infrastructure;

4. GSA’s data, a collection of
miscellaneous data from projects
across the agency; and

5. NASA’s mct, the original desktop
version of openmct (the latter is a
web application).

It is important to note that while NASA and
the DOD contribute the most repositories to
the top 20, they underperform when we
consider their total collection of repositories.
Both agencies have a ‘long tail’ of
underperforming repositories. When
ranking agencies by average engagements
per repository, NASA and the DOD come
19th and 21st respectively out of 22
(Appendix C). When we consider both total
engagement and average engagement GSA
performs most consistently, ranking 3rd and
4th respectively on those metrics. The
Department of the Interior also performs
well, coming in at 4th and 6th.

19

A list of the top-performing repositories for
each agency is provided in Table 4. Note that
there is substantial variation between these
repositories: NASA’s best-performing
repository has >39,000 engagements,
whereas the National Science Foundation’s
has only four.

V. HOW DOES THE PUBLIC
ENGAGE WITH THESE
REPOSITORIES?

Across all repositories, most
engagement comes in the form of Stars
and Forks.

In our sample, Stars accounted for 54% of
engagements, Forks 40%, Issues 4%, and
Pull Requests 2%. This is encouraging: As
already discussed, Stars and Forks suggest
users want to use federally-released code for
their own purposes. By contrast, Issues and
Pull Requests reflect potential problems and
proposed modifications to data.

That Stars and Forks account for most of the
total engagement could be the result of two
possibilities: Either code being shared is
relatively bug-free, or the public is
insufficiently engaged to bother spending
time looking for problems. With a dataset
this large, the truth is likely a combination of
the two. We explore the implications of these
two possibilities in Chapter 4.

VI. HOW RESPONSIVE ARE
AGENCIES TO ENGAGEMENT?

Agencies are relatively responsive to
engagement.

We measure responsiveness in two ways. In
the first instance, we calculate the percentage
of pull requests that have been either closed
or merged, which means the suggested
changes from the user have been either
rejected or taken on board. On this metric,
the results are strong: Across repositories, an
average of 96% of pull requests are acted
upon (Appendix D). Moreover, the range
between agencies is relatively small: Three
agencies have acted on 100% of Pull
Requests, and the lowest performer, the
Department of Education, has still
responded to 89%. However, it is worth
noting that Pull Requests – more than any
other engagement we measure – are likely to
come from internal sources.

Performance using the second measure of
responsiveness is more mixed. Here, we
calculate the percentage of Issues raised that
have been closed. This means that the
repository owner has addressed the potential
problem raised by the user. On average,
agencies closed 63% of Issues raised. The
Office of Personnel Management leads with
91% and the Treasury performs worst,
having only closed 37% of Issues.

One explanation for the variation may be the
different amounts of initiative that pull
requests and issues require of the repository
owner. In pull requests, the user suggests
changes for the code; in issues, they merely
flag an issue. It is therefore possible that the
repository owners are more willing to act
upon a suggested fix than spend the time
coming up with one themselves.

20

Announcment, of Federal Source
Code Policy

0

1000

2000

3000

4000

5000

6000

Figure 4
Total number of federal repositories
Cumulative total

Announcement of
Federal Source

Code Policy

0

20,000

40,000

60,000

80,000

8/1/2014 8/1/2015 8/1/2016 8/1/2017 8/1/2018

Figure 5
Total engagement with federal repositories
Cumulative total

Fork Issue Pull request Star

25 Note that engagement totals will not align with the current live totals on each repository’s GitHub page. The scraping tool we have used captured all engagements over time. If a user Stars something on
GitHub, and later un-stars it, then that Star will appear in our totals above but not on GitHub’s current live Star total for that repository.

Table 3: Repositories, ranked by total number of engagements from October 2008 to January 201925

Rank Repository Agency Date created Total
engagements Stars Forks Issues Pull requests

1 openmct NASA 6/2/2015 39,731 22,011 17,612 29 79

2 Dshell Department of Defense 12/17/2014 9,706 5,131 4,476 23 76

3 SIMP Department of Defense 4/28/2015 4,164 2,436 1,722 - 6

4 data General Services Administration 12/16/2014 2,330 1,379 940 1 10

5 mct NASA 5/1/2012 2,928 1,648 1,280 111 4

6 Data.gov General Services Administration 07/16/2013 2,312 1,304 1,002 6 -

7 NASA-3D-Resources NASA 7/23/2014 2,288 1,480 808 9 1

8 project-open-
data.github.io Department of Commerce 1/29/2015 2,221 829 778 256 358

9 Windows-Secure-Host-
Baseline Department of Defense 2/26/2016 1,689 984 640 59 6

10 worldview NASA 4/22/2014 1,411 360 198 518 335

11 lemongraph Department of Defense 7/25/2016 1,325 862 440 7 16

12 sunpy NASA 8/6/2011 1,303 387 296 192 428

13 WebWorldWind NASA 8/29/2015 1,280 370 272 419 219

14 xAPI-Spec Department of Defense 12/19/2012 1,262 530 590 85 57

14 goSecure Department of Defense 4/28/2016 1,210 800 387 5 18

15 Citysdk Department of Commerce 8/4/2016 1,136 498 270 274 94

17 team-titan Office of Personnel Management 7/23/2018 852 - - 852 -

18 pshtt Department of Homeland Security 7/5/2016 843 521 141 65 116

19 WALKOFF Department of Defense 6/8/2016 815 396 212 87 120

20 earthdata-search NASA 8/13/2015 786 454 268 7 57

Total 80,911 43,307 32,710 2,886 2,008

Table 4: Top performing repositories for each agency

Agency Organization Repository Description Date created Total
engagements

NASA NASA openmct Web-based mission control
framework

6/2/2015 39,371

Department of
Defense

US Army Research
Laboratory

Dshell Network forensic analysis
framework

12/17/2015 9,706

Department of
Health and Human
Services

Blue Button Blue Button Personal health data
application

12/21/2015 3,649

Department of
Commerce

US Census Bureau Project-open-
data.github.io

 Open data policy 1/29/2015 2,221

Office of Personnel
Management

USA Jobs Team-titan Internal resource for
project team

7/23/2018 852

Department of State Department of State State-TalentMAP System to match State Dept
employees with open jobs

5/18/2017 766

General Services
Administration

18F Analytics.usa.gov Monitors US federal gov’t
web traffic

12/30/2014 750

Department of
Homeland Security

CISA pshtt Scan domains and return
data based on HTTPS best
practices

7/05/2016 843

Department of
Justice

Department of
Justice

Foia.gov Front end of national FOIA
portal

7/10/2017 735

Department of
Veterans Affairs

Department of
Veterans Affairs

Caseflow Web app to track and
process appealed claims at
the Board of Veterans'
Appeals

2/10/2016 536

Department of the
Treasury

Federal Spending
Transparency

Usapsending-api Interface to monitor public
spending

8/10/2016 490

Department of the
Interior

USGS Web
Informatics and
Mapping

Whispers Wildlife Health
Information Sharing
Partnership Event
Reporting System

1/11/2018 455

Environmental
Protection Agency

EPA e-manifest Online form for hazardous
waste shipments

12/1/2016 395

Department of
Energy

Lawrence Livermore
National Laboratory

Lbann Artificial neural network
training

5/11/2016 353

Department of
Transportation

US DOT ITS JPO
ODE

Jpo-ode Interface to share
connected vehicle data

10/26/2016 344

US Department of
Agriculture

Farm Service Agency Fsa-style Style guide for the FSA 4/18/2016 284

Small Business
Administration

USSBA Hubzone-webmap Digital map for
underdeveloped hubs

10/12/2016 261

Department of Labor Department of Labor Handbook Employee handbook 8/31/2016 157

Social Services
Administration

SSAgov ANDI Tool to test web content for
accessibility

8/8/2017 102

Department of
Education

Department of
Education

Usedgov.github.io Developer hub for the DfE 7/13/2016 92

USAID USAID USAID-Data-
Services

 Interface to request data
service support

4/3/2013 56

National Science
Foundation

National Science
Foundation

nsf-ember-tooltip Tool to integrate different
developer applications

6/21/2017 4

24

4. QUALITATIVE FINDINGS

A small number of Superstar Repositories significantly outperform their peers. The
question is why. In this Chapter, we find that repositories which feature a
combination of nine characteristics are most likely to receive significant
engagement. These characteristics constitute the DREAM CODE framework.

There are two parts to this analysis. First, we develop the DREAM CODE framework. This was
based on interviews with ten subject matter experts from the public, private, and non-profit
sectors, 2 focus groups with a dozen federal employees, and a review of the academic and industry
literature. In this research, we identified best practices in repository management. We then
aggregated these into the DREAM CODE framework.

Box 2

SUMMARY OF QUALITATIVE FINDINGS
There are nine characteristics that drive higher levels of user engagement. These constitute the
‘DREAM CODE’ framework.

Discoverability: Repositories should be easily discoverable by users. This will often
involve the repository owners taking a ‘communication-centered’ approach, for example by
selecting a user-friendly name for the repository, actively linking to it on their websites, and
ensuring it appears in search engine results.

Reusability: Source code should be complete, self-contained and usable, with
minimal recoding required for functional reuse. This might also entail modularizing the
code to separate out the sections that are most reusable.

End user: Repositories should be developed with specific target populations in
mind. The population needs to have either intrinsic or extrinsic motivation to engage with the
code.

Applicability elsewhere: A repository’s contents should provide a wide variety of
reuse application opportunities. They should avoid being too specialized or technical.

Maintenance: Source code should be regularly maintained after its initial open
sourcing.

Community building: Repository owners should actively create and engage
community around the project. This might be by targeting a specific community, for example
by leveraging passion around a specific issue.

Open origins: Repositories should be ‘written in the open’ – that is, not built as ‘closed’
software and opened later. Open origins mean the code is developed with the OSS user in mind.

Documentation: Repositories should have clear documentation and clear
descriptions of their contents. This often includes a mission statement and an outline of the
repository’s scope.

Explicit licensing: Repositories should opt for an open source-friendly license
– and be explicit about the terms of that license in its read-me.

26

NOTES ON METHODOLOGY

Some caveats on the DREAM CODE
framework and our methodology in testing
it:

x Given the nature of the topic, the nine
characteristics included in the
DREAM CODE framework are
interconnected. In some cases –
depending on the specifics of the
repository in question – they may
overlap. For example, for some
repositories, having ‘open origins’
and being coded in the open will
likely involve regular maintenance.
We have chosen to keep the nine as
separate characteristics, however, in
order to preserve the generalizability
of the framework.

x This framework was designed with
the intention of creating repositories
with high engagement. Not all
repositories are designed with this
objective in mind – some projects, for
example, may be made open so that a
small number of specific contributors
can work on it. As a result, not all the
criteria will be relevant to all OSS
projects.

26 Fogel, Karl, Producing Open Source Software: How to
Run a Successful Free Software Project, Version 2.3098,
Available online at http://producingoss.com. p. 13.

27 Fogel pp. 13-14.

THE DREAM CODE
FRAMEWORK

DISCOVERABILITY
Repositories should be easily
discoverable by members of the OSS
community.

The repository’s name should be clear
and relevant. As Karl Fogel, author of the
leading manual on OSS practices, notes,
having a “good name” is important because
it’s the “the first thing [a user] will
encounter”.26 It should indicate the purpose
of the project, be easily memorable, be
distinct from other project names, and not
violate any trademarks.27

Discoverability is particularly important in
the public sector. Tee Morris,
Communications Director for Code.Gov, told
us that the most common problem with low-
engagement repositories in his experience is
names and descriptions that give no
information about the repository’s
contents. 28 By contrast, repositories with
high engagement tend to have thorough and
user-friendly descriptions.

The repository’s home page should
also be user-friendly. This includes
simple measures such as having an email
address that users can contact with any
questions and having an avatar for the
repository owner account. 29 One subject
matter expert – responsible for two of the

28 Interview with Tee Morris.

29 Interview with Eric Mill, a leading expert on open source
in government with many years of experience at 18F. Mill
founded Super Repository #4 and was closely involved in the
development of #18.

27

Superstar Repositories – argues that these
measures give the home page of a repository
a ‘human’ veneer, which is vital to attracting
new users.

Repository owners should take a
communications-centered approach.
Publicizing the repository – for example by
linking to the project on agency websites,
policy pages, and in email signatures –
makes it more discoverable to relevant
populations. 30 18F, which has multiple
repositories with high engagement, uses
website footers, blogs, Twitter, external
newsletters, and presentations at
conferences.31

REUSABILITY
Source code should be complete, self-
contained, and usable. There should
be minimal recoding required for
functional reuse.

Code should be easy to initiate in
reuse.32 Code that can be easily automated
– and made functional with limited hassle –
is likely to receive high engagement levels.33
This could be achieved via a simple

30 Federal employee focus group, 28 February. One
participant in our federal government focus group noted that
an agency making its open source repositories easily
discoverable on the agency’s website is typically correlated
with high levels of user engagement. Another participant
noted the importance of a repository appearing in search
engine results and being search engine optimized (SEO) for
it to attract users.

31 Britta Gustafson, a content designer at 18F, noted this in
an official public comment on behalf of 18F on GitHub.
Available at: https://github.com/WhiteHouse/source-code-
policy/issues/94.

32 Interview with Ricardo Reyes. Ricardo is Open Source
Director in the Code.Gov team and is responsible for
community and agency outreach.

command in the repository’s ‘Read Me’
which gets the code up and running.34

Code should be modularized where
possible. This means separating sections
that are most reusable from less usable
sections.35 Research finds that when it comes
to open data in government, which has many
parallels with open source in government,
reusability is also important for “making
version management clear and reliable” and
“ensuring data quality, easy-to-understand
content and formatting”.36

END USER

Repositories should be designed with
specific end users in mind. Owners
should consider user motivations for
engaging with a repository.

Owners should distinguish between
the intrinsic and extrinsic
motivations users have for engaging
with a project. Intrinsic motivations are
related to the direct potential uses of a
project. Extrinsic motivations are related to
the status or reputation gained by the user
for engaging and contributing to a given
repo. 37 Research suggests that repositories

33 Told to us by two federal employees in one of our focus
groups.

34 Interview with Eric Mill.

35 Interview with Ricardo Reyes.

36 Sushchenia, Iryna and Grönlund, Åke, Organizational
measures to stimulate user engagement with open data,
Transforming Government: People, Process and Policy Vol.
9 No. 2, 2015 p. 194.

37 Roberts, Jeffrey A., Hann, Il-Horn, and Slaughter, Sandra
A., Understanding the Motivations, Participation, and
Performance of Open Source Software Developers: A
Longitudinal Study of the Apache Projects, Management

28

satisfying both of these motivations are more
likely to get higher engagement.38

If reach is the objective of the
repository, projects should avoid
being too tightly tied to one end user.39
Otherwise it will be too hard for other end
users to use it for their own purposes.

Other projects may focus on smaller –
but passionate – audiences. Projects
most frequently used by the scientific
community are a good example.40

Owners should be deliberate in which
programming language they use. It
may be even more important than the quality
of the code itself. 41 For example, while
Python is a popular OSS language, relatively
few government repositories use it.42 Some
federal teams are already consciously
choosing programing languages based on
potential user engagement - for example,
Code.Gov chose Reactive over Angular as its
base language specifically because it would
increase the public’s ability to contribute to
the project.43

(Note: Very few repos have only one
language – one study of repositories on
GitHub found that around 97% of projects

Science Vol. 52, No. 7, Open Source Software (Jul., 2006),
pp. 986.

38 Roberts et al. p. 996.

39 Interview with private sector industry expert who spoke on
condition of anonymity.

40 Participant in federal employee focus group.

41 McDonald, Nora, and Goggins, Sean, Performance and
Participation in Open Source Software on GitHub, CHI EA
'13 CHI '13 Extended Abstracts on Human Factors in
Computing Systems. P.. 144.

42 Interview with Amin Mehr from the Code.Gov team.

contained two or more languages. 44
However, whether specific modules contain
one language over another can affect
engagement).

APPLICABILITY ELSEWHERE
The project should be relevant beyond
its origin intent.

Owners should prioritize library code
over application code. 45 The former
includes projects that are specifically
designed to be reusable in multiple
scenarios. The latter includes projects which
are created for specific purposes.

Owners should prioritize code that
can be used for infrastructure and
platform projects.46 This is especially true
of code that works cross-platform (e.g. on
both Windows and Linux). 47 Source code
should ideally also be system interoperable,
meaning that it has the “ability to transfer
and use information in a consistent, efficient
way across multiple organizations and IT
systems to accomplish operational
missions”.48

43 Interview with a senior member of the Code.Gov team.

44 Tomassetti, Federico , and Torchiano, Marco, An
Empirical Assessment of Polyglot-ism in GitHub - EASE ’14,
May 13 - 14 2014.

45 Interview with Eric Mill.

46 Interview with David Eaves.

47 Interview with Eric Mill.

48 “Project Interoperability.” Project Interoperability,
project-interoperability.github.io/.

29

MAINTENANCE

Repositories should be regularly
maintained once created. This
includes updates for new features, bug
fixes, and other changes.

Owners should encourage diversity in
their community of maintainers.
Having a broader mix of individuals
maintaining the code base increases the
quality and regularity of maintenance.49 For
this reason, the OSI requires that its
members seek "active participation from
multiple contributors, i.e. individuals and
organizations other than founders".50

One metric to assess the maintenance health
of a repository is the frequency of ‘commits’
on GitHub.51 Another is how recently the last
meaningful commit was performed.52

Owners should consider continuous
integration as a way of improving the
quality of their maintenance
process.53 This mechanism ensures quality
standards “running tests every time you push
a new commit and reporting the results to a

49 Told to us by participant in federal employee focus group.

50 “Affiliate Membership Qualifications and Criteria.”
Affiliate Membership Qualifications and Criteria | Open
Source Initiative, opensource.org/AffiliateRequirements.

51 Commits are individual changes to a file or set of files
within a repository.

52 ‘Meaningful’ here means a substantial change in the source
code, rather than something more administrative, such as
correcting a typo. There are a number of ways to consider
‘recent.’ CHAOSS, a Linux Foundation project looking at
Community Health Analytics of Open Source Software, notes
the varying levels of nuance that could be used when
analyzing frequency of commits. For example, CHAOSS
notes it could be useful to distinguish between the number of
commits made and the number of commiters, or number of
commits and the number of lines of code added or changed
per commit. See “Metrics With Greater Utility: The
Community Manager Use Case.” CHAOSS, 25 Feb. 2019,

pull request.”54 Responding to pull requests
swiftly also helps this effort.55

Provide a clear and accurate
statement about the project’s
development status. This includes
outlining for users what stage of
development the software in question is in,
to avoid a scenario of over-promising and
ultimately repelling users through
disappointment.56

A good maintenance history will encourage
user engagement. Because it is difficult to
assess the quality of a repository’s code from
the outset, users may often look at a
repository’s development history (i.e.
maintenance history) as a proxy for its
quality when deciding whether to engage
with the code.57

COMMUNITY BUILDING
Owners should focus on building a
lively community around their
project.

chaoss.community/news/2018/11/16/metrics-with-greater-
utility-the-community-manager-use-case/.

53 This was suggested by the owner of a Superstar Repository
in a focus group.

54 This explanation of continuous integration is courtesy of
Nicolai, Johannes. “GitHub Welcomes All CI Tools.” The
GitHub Blog, 4 Jan. 2019, github.blog/2017-11-07-github-
welcomes-all-ci-tools/.

55 Participant in federal employee focus group.

56 Fogel p. 17.

57 Ndenga, Malanga Kennedy, Jean, Mehat, Ganchev, Ivaylo,
and Franklin, Wabwoba Assessing Quality of Open Source
Software Based on Community Metrics, International
Journal of Software Engineering and Its Applications,
(2015) 9:12, 337-348.

30

Repository owners should view
community outreach as an
indispensable part of the open source
process. Without a lively community, an
OSS project is little more than code which
happens to be shared online. The benefits of
OSS that come with public engagement – for
example, bug fixes and the creation of new
capabilities – only exist to the extent there is
a vibrant community around the code.

This is particularly a problem in the public
sector. One expert described community
outreach as “the major blocker to public
engagement” in federal OSS projects,
pointing out that many agencies have neither
the time nor the resources to do this.58

In many cases, community outreach is
currently done on the government’s terms
(which the expert described as an approach
of “come to our agency to talk to us on how
you engage with your code”). By contrast,
best practice is to take proactive steps such
as organizing conferences where developers
can interact with federal employees and
repository owners directly.

Projects should have full-time
community managers attached to
them. One reason for this problem is that
some federal employees tasked with
managing open source projects are not
experts in the field. Ensuring that projects
have full-time community managers helps to
increase engagement because it (a) ensures
alignment between the project and what the
community can reasonably contribute to,

58 John Scott, from Ion Channel, is an open source contractor
for the federal government with particular experience on
Department of Defense software policy .

59 Interview with Eric Mill.

and (b) provides a constant interface with the
public to facilitate any public engagement.

This also mitigates the issue – common in
federal government – where agencies
discourage developer feedback. This is
because of the perceived political and
communications risks, rooted in
nervousness about unfamiliar
technologies.59

One interviewee noted that GSA and NASA –
two agencies which feature overwhelmingly
in the list of Superstar Repositories – have
been able to mitigate this risk by opting for a
“forgiveness rather than permission”
workflow when interacting with developers.
The alternative – a permission-based review
process for any engagement with users in a
given repository – can be laborious and
becomes fatal to community building.

Owners should be responsive to issues
posted by users on GitHub. Some
agencies address issues offline. This is a basic
means to promote community
engagement. 60 A strong presence on other
social media used by the open source
community also helps.61

Projects should create structured
forums for community engagement.
For example, the manager of one Superstar
Repository told us that he hosted a weekly
conference call for GitHub users to discuss
Pull Requests and Issues.62 They also had a
kickoff webinar when the project was
originally launched, and used GitHub as a

60 Interview with Eric Mill.

61 Interview with Eric Mill.

62 Federal employee focus group participant who manages a
Super Repository.

31

way to have a one-stop shop and on-going
collaboration on the project (rather than
handling it through email).

Planned forums for community
engagement should be documented. In
its Affiliate Member requirements, OSI
stipulates that organizations should have a
"documented approach for participation by
the public" as well as "methods for current
and interested individuals/organizations to
join and participate in your community".63

Community managers should
cultivate a productive and civil tone
amongst members. A repository’s text
and tone determine whether it has ‘a human
face’ – and hence entices engagement. 64
Codes of conduct contribute to this tone.65

OPEN ORIGINS
Projects should be open from Day 1.

The longer a project is run in a closed source
manner, the harder it is to open source
later. 66 This is because the longer a
repository is closed, the more likely it is to
contain sensitive or confidential information
and passwords within the code.

This risk is particularly acute in the public
sector context: For example, sensitive

63 “Affiliate Membership Qualifications and Criteria.”
Affiliate Membership Qualifications and Criteria | Open
Source Initiative, opensource.org/AffiliateRequirements.

64 Fogel p. 118.

65 Fogel p. 28.

66 Fogel p. 31.

67 Fogel p. 88.

68 Participant in federal agency focus group.

government passwords or citizen data could
be accidentally released in a late-stage switch
to open. 67 Flipping from closed to open is
hard because the agency must vet code for
any security issues.68 It is also difficult to get
teams to make the cultural switch to open
development.

Other public sector organizations take this
approach. The UK’s Government Digital
Service, for example, explicitly advocates for
‘coding in the open.’69

DOCUMENTATION
Repositories should come with clear
documentation that describes its
contents. Documentation “is essential”
because “there needs to be something for
people to read, even if it's rudimentary and
incomplete.”70

However, it can also place a high burden on
the developer. It is therefore useful to
establish minimal criteria for user-friendly
documentation – for example, a description
of the minimum technical knowledge
required of the user, information about
setting up the software, an example of how to
perform the basic task using the software,
and acknowledgement of any deficiencies or

69 “Making Source Code Open and Reusable.” GOV.UK,
www.gov.uk/service-manual/technology/making-source-
code-open-and-reusable. For more, please see Shipman,
Anna. “The Benefits of Coding in the Open.” Government
Digital Service, gds.blog.gov.uk/2017/09/04/the-benefits-
of-coding-in-the-open/ and Shipman, Anna. “Don't Be
Afraid to Code in the Open: Here's How to Do It Securely.”
Technology in Government,
gdstechnology.blog.gov.uk/2017/09/27/dont-be-afraid-to-
code-in-the-open-heres-how-to-do-it-securely/.

70 Fogel p. 20.

32

missing parts within the software. 71 This
helps limit the amount of work required of
the project owner.

Documentation should be
comprehensive but clear. Complicated
language is likely to turn away community
members.72

Wikis and Read Me files should be
well developed. Shortcuts on these
elements can be detrimental to community
growth.

Badges should be effectively used. 73
This is a clear and simple means to signify to
users the development stage and quality of
the code and appropriately set user
expectations.

A clear mission statement should be
provided. A clear description – which
briefly outlines the contents and purpose of
the project – enables potential users to
decide whether the repository in question
suits their purposes. 74 This should be
accompanied by a features and requirements
list that “clarifies the mission statement’s
scope”.75

71 Fogel p. 20.

72 Told to us by the manager of a Super Repository in the
federal employee focus group.

73 Badges are a community norm on GitHub and a means “to
signal to fellow developers that we set ourselves high
standards for the code we write“. This explanation is
courtesy of GitHub repository’s explanation of the value of
badges https://github.com/dwyl/repo-badges

74 Fogel p. 15.

75 Fogel p. 16.

EXPLICIT LICENSING
Repository owners should make
explicit choices about licensing
before making a project open
source. They should be clear to the
community about what the chosen
license is. 76

Licensing is a critical driver of user
engagement: Choosing a license and clearly
stating it is a central design step. 77
Sophisticated community members will
often choose not to engage in projects unless
there is clarity around licensing questions.78
Many users don’t want to contribute to a
project that may later become a commercial
entity’s IP.

Government agencies often create OSS
projects without thinking about these
questions and without sharing their
perspectives on them. This, in turn, deters
potential community members.

The Army Research Lab and NASA are two
examples of agencies that tend to manage
licensing up-front well. 79 They generally
attach permissive licenses to projects.

76 See Fogel Chapter 9 “Legal Matters: Licenses, Copyrights,
Trademarks and Patents”, for example, if interested in more
on this issue.

77 Fogel p. 24.

78 Interview with subject matter expert who spoke on
condition of anonymity.

79 Interview with subject matter expert who spoke on
condition of anonymity.

https://github.com/dwyl/repo-badges

33

5. RECOMMENDATIONS

The Pilot Program has had some successes – but there is more work to be done. The
analyses in Chapters 3 and 4 show that engagement with federal source code is
inconsistent amongst agencies and projects. This implies that there is some sort of
inefficiency in the policy. As the August 2019 Pilot Program deadline approaches, it
is up to Code.Gov and GSA to determine what changes – if any – ought to be made
to fix this.

In this Chapter, we outline major decisions that need to be made in the run-up to August 2019
and the design of ‘Open Source Policy 2.0.’ We also provide our recommendations for which
alternatives should be chosen in these decisions. Specifically, we recommend that a redesigned
policy will need to make choices at four decision nodes:80

x Articulate the policy’s purpose clearly;
x Amend the requirement that 20% of federal source code be released publicly;
x Explore further programmatic infrastructure that can support agencies in their efforts to

release open source code; and
x Commit resources to research and analysis of open questions raised by this research.

80 Note that this Chapter assumes that discontinuing open source in the federal government is a non-starter for Code.Gov. The brief
from our client was to assess the effectiveness of the Pilot Program and suggest improvements that could help increase this. Larger
decisions about whether to continue the Pilot Program or not rest on political considerations that are beyond the remit of our
research.

34

I. DEFINE THE OBJECTIVE OF
FEDERAL OSS

When the Obama Administration announced
the Federal Source Code Policy in August
2016, several justifications for the policy
were offered:

1. Generating procurement
savings: Creating cost savings and
improve procurement practices, by
avoiding “duplicative custom
software purchases” amongst
agencies and vendor lock-in;

2. Encouraging innovation within
government: Fueling
transparency, innovation and better
software engineering in government,
by promoting “collaboration across
Federal agencies” on projects;

3. Sparking contributions from
beyond government: Facilitating
qualitative improvement to federal
source code, by enabling members of
the public to help develop code that's
“reliable and effective in furthering
our national objectives;”81 and

4. Enabling third party reuse:
Honoring public ownership of the
code by providing the public with
“the People’s code” that their
taxpayer dollars fund.82

Objectives 1 and 2 are primarily addressed by
the first pillar of the Policy, which is aimed at
encouraging interagency coordination and
sharing on source code.

Objectives 3 and 4 are notionally tied to the
second pillar, i.e. the Pilot Program. The

81 Scott, Tony, U.S. Chief Information Officer. “The People's
Code.” National Archives and Records Administration,
National Archives and Records Administration, 2016,
obamawhitehouse.archives.gov/blog/2016/08/08/peoples-
code.

82 Scott, Tony, U.S. Chief Information Officer. “The People's
Code.” National Archives and Records Administration,
National Archives and Records Administration, 2016,

policy states that agencies “should develop
and release the code in a manner that fosters
communities around shared challenges and
improves the ability of the OSS community
to provide feedback on, and make
contributions to, the source code” 83 (i.e.
Objective 3). It also states that “when
deciding which custom-developed code
projects to release, each agency should
prioritize the release of custom-developed
code that it considers potentially useful to
the broader community” (i.e. Objective 4).

This report has focused on the question of
whether the Pilot Program has met Objective
4 – that is, whether the public has in fact
used the source code released in the Pilot
Program.

In practice, however, it is not clear whether
the federal government’s Open Source Pilot
Program in its implementation has been
primarily intended to solicit contributions
from the public (Objective 3), to share OSS
with the public (Objective 4), or some
combination of the two. Multiple
interviewees questioned whether public-
facing elements of the Federal Source Code
Policy are – or should be – a priority for open
source in government. They argued that the
procurement and innovation rationales
(Objectives 1 and 2) are in fact the major
motivation for the federal government’s use
of open source. As one commentator has
written, “the federal source code policy is
decidedly not an open-source policy. Rather,
the policy was principally directed at
government-wide reuse of source code and
making sure that agencies could find other
agencies’ source code.”84

obamawhitehouse.archives.gov/blog/2016/08/08/peoples-
code.

83 “Federal Source Code Policy.” Open Source Software,
sourcecode.cio.gov/OSS/.

84 Zvenyach, V. David. “The Trouble with the Federal Source
Code Policy, and What to Do about It: Part One.” Medium, 9
Oct. 2018, medium.com/@vdavez/the-trouble-with-the-
federal-source-code-policy-and-what-to-do-about-it-part-

35

The lack of clarity on this point matters: It
means that different agencies have
interpreted and applied the policy
differently, and that by trying to achieve
multiple goals with limited resources, the
Pilot Program has struggled to achieve
strong results in any of them. This is
apparent in the findings from Chapter 3.
While the Superstar Repositories garnered
significant engagement – meeting Objectives
3 and 4 – the ‘long tail’ of repositories with
low engagement were neither reused nor
contributed to by the public. This means the
federal government is not living up to its
stated ambition of providing the public with
“useful” code.85

We do not provide a specific
recommendation about what objective Open
Source Policy 2.0 should pursue. That is a
political decision that is subject to the
priorities of the current administration.
However, in the remainder of this chapter we
do assume that Code.Gov and GSA will
continue to seek public engagement with
federal source code. That means we assume
that Open Source Policy 2.0 will intentionally
prioritize Objective 3 or 4.

Once the Code.Gov team has determined its
objectives of an open source policy in Stage I,
there are three decisions that it needs to take
in designing the next iteration of the policy.

Note that given the scope and focus of this
research on user engagement with the
federal government’s source code, the
decisions and alternatives presented are
focused predominantly on user-engagement
related elements of the policy. Should

one-f1f26d0232ab. Zvenyach served as a Senior Technical
Advisor and Assistant Commissioner for the US General
Service Administration’s Federal Acquisition Service Office
of Systems Management and as Executive Director of 18F
[information taken from his official website at
https://esq.io/pages/about.html].

85 Section 5.1 of the Federal Source Code Policy states that
agencies “should prioritize the release of custom-developed
code that it considers potentially useful to the broader

Code.Gov decide to focus on Objectives 1
and/or 2 (Government Procurement and
Innovation) rather than Objectives 3 and/or
4 (User Contributions and Reuse), Code.Gov
needs to undertake further work to analyze
the best way forward to achieve these
objectives.

II. AMEND THE “20%
REQUIREMENT”

Code.Gov should reconsider the
requirement that 20% of federal
source code be released publicly.

A recurring discovery of our research is that
the Second Pillar’s “20% mandate” – the
guideline that federal agencies should
release that amount of their source code
publicly – is flawed. It is not clear what
metric agencies should use to measure 20%
of their code.86 It could mean, for example,
20% of total projects, of SLOCs, or of costs.

The original intention was that Code.Gov
would provide guidance around how to
measure the 20% requirement. The policy
states that:

“Agencies should calculate the percentage of
source code released using a consistent
measure—such as real or estimated lines of
code, number of self-contained modules, or
cost—that meets the intended objectives of
this requirement. Additional information
regarding how best to measure source code
will be provided on Code.gov.”87

In practice, agencies are still able to define
their own metric. Code.Gov advises agencies
that “[h]aving established an inventory of

community”. “Federal Source Code Policy.” Open Source
Software, sourcecode.cio.gov/OSS/.

86 This was a criticism the policy came under from its initial
drafts that were released for public comment See, for
example, 18F’s public comment on the issue at
https://github.com/WhiteHouse/source-code-
policy/issues/179.

87 “Federal Source Code Policy.” Open Source Software,
sourcecode.cio.gov/OSS/.

https://github.com/WhiteHouse/source-code-policy/issues/179
https://github.com/WhiteHouse/source-code-policy/issues/179

36

new custom-developed code, agencies will
still need to determine their method of
measuring the amount of code it
represents.” 88 They then provide some
options that agencies can choose from,
including those mentioned above.

The result is that the amount of code which
agencies release as open source varies
significantly. 89 Moreover, the source code
which is released is often made public simply
to meet the 20% target, rather than to
promote any of the objectives outlined
earlier in this Chapter.

The choice of 20% as a target seems to have
been the result of political considerations,
rather than a deliberate choice to maximize
the effectiveness of the policy. Multiple
interviewees said that the 20% figure was
chosen as a way to balance a faction arguing
for 100% OSS on the one hand and a faction
arguing for 0% on the other. It was also
chosen, they said, to maintain the federal
government’s commitment to technology
neutrality.90

EVALUATION METHODOLOGY

For the following set of policy design
decisions, we use a simple evaluation
methodology to recommend options.

We measure each option against the
potential objectives of an Open Source Policy
2.0. We use a simple scoring system: the
option receives a 1 if it is expected to

88"Measuring Source Code", Code.Gov,
https://code.gov/about/open-source/measuring-code.

89 GSA hosts a dashboard measuring agency compliance with
the Federal Source Code Policy. It shows that only 3 agencies
are fully compliant with the Policy. Available at
https://gsa.github.io/compliance-dashboard-web-
component/.

90 The federal government’s stance is that “agencies must
consider open source, mixed source, and proprietary
software solutions equally and on a level playing field, and
free of preconceived preferences based on how the
technology is developed, licensed, or distributed.” “Three-
Step Software Solutions Analysis.” Three-Step Software

positively contribute to that objective, a 0 if
it will likely have no effect, and a -1 if it is
expected to actively detract from that
objective.

We then add the totals to produce a
recommendation. Note that we assume
Code.Gov will decide that Open Source
Policy 2.0 should continue to promote user
engagement. This means the ultimate set of
recommendations are designed to encourage
engagement. However, if Code.Gov decides
that the procurement and transparency
objectives will be the cornerstone of any
future policy, these recommendations would
change.

OPTIONS

Open Source Policy 2.0 needs to address the
20% ambiguity. This could be done in several
ways:

1. Mandate a ‘default to open
source’ approach (“100%
requirement”). All federal source
code should be made open except in
particular cases (for example, where
there are security concerns).
This approach is used by other
governments, including the UK.91 It
is also supported by many in
industry.92

Benefits: Enforcement would be
much easier, since it is easier to
identify agencies that are not sharing

Solutions Analysis, policy.cio.gov/source-code/three-step-
software-solutions-analysis/.

91 Point 8 of the UK government’s Digital Service Standard
requires this. Please see Government Digital Service. “8.
Make All New Source Code Open.” GOV.UK, GOV.UK, 29
June 2016, www.gov.uk/service-manual/service-
standard/make-all-new-source-code-open.

92 For example, Zvenyach, V. David. “The Trouble with the
Federal Source Code Policy, and What to Do about It: Part
One.” Medium, 9 Oct. 2018, medium.com/@vdavez/the-
trouble-with-the-federal-source-code-policy-and-what-to-
do-about-it-part-one-f1f26d0232ab.

https://code.gov/about/open-source/measuring-code

37

all of their code than it is to identify
agencies sharing >20% of code.

Moreover, there would be more
opportunities for the developer
community to contribute to federal
code. The net effect would be greater
innovation in federal code.

Costs: The major problem is political
feasibility. Our interviews revealed
strong resistance from many agency
representatives towards this
approach, given the administrative
burden it would put on them.

2. Introduce a set of criteria that
determine what projects should
be open sourced (“0% with
exceptions requirement”).
Instead of using a volumetric
requirement, as the Pilot Program
has done, Code.Gov could instead
provide a ‘checklist’ that defines what
code should be made open source.
The DREAM CODE framework is one
example: Assuming the goal of the
policy is to stimulate user reuse, then
any federal code that displays X of the
9 DREAM CODE characteristics
would be required to be made open
source.
Benefits: The projects made public
would be those benefiting most from
the open source community.

This would also stop resources being
wasted on sharing projects that are
unlikely to benefit from being open.

Costs: Providing a ‘check list’ of
specific characteristics provides
multiple opportunities to argue that a
project should not be made open. If
an agency already views the use of
open source as an administrative
burden, this approach would make it
easier to argue that projects should
remain closed.

Even those agencies that actively
support OSS efforts would suffer

from the increased administrative
burden.

Finally, it would be difficult to
enforce: Code.Gov would have to
audit closed projects according to a
complicated checklist, which would
be a timely endeavor.

3. Maintain the 20% requirement
but provide a uniform
definition of the metric.
Code.Gov would provide a single way
of measuring the 20% requirement.

Benefits: This would make
enforcement easier, since Code.Gov
would assess compliance against a
single standard rather than whatever
the federal agencies choose to use.

Costs: This would not address many
of the problems that the 20% figure
creates. For example, agencies could
still release code that does not
encourage public engagement.

4. Continue with the status quo by
maintaining the 20%
requirement as is.

Benefits: This is highly politically
feasible, given it is the status quo.
Moreover, there is no ‘learning curve’
in implementing a new policy.

Costs: Our research has shown this
approach is inefficient and
ineffective. It doesn’t optimize for
any specific policy goal.

In addition, the volumetric
requirement is a process burden –
agencies need to define a way of
measuring 20% and monitor their
compliance with it – which creates
complexity for federal employees and
developers.

RECOMMENDATION

Code.Gov should default to open by
setting a “100% requirement (with
exceptions).”

38

Option A would have a positive impact on all
four potential objectives for the policy (Table
6). It strictly dominates Option B, 93
“Qualitative Criteria,” which is not expected
to have a significant impact on either
government procurement or innovation
within government. The other two options
are not expected to have significant impacts
on any of the four objectives. Regardless of

which objective Code.Gov lands on for Open
Source Policy 2.0, defaulting to open is the
recommended option.

Although this may be less politically feasible
than other options, the fact that other
governments – including the UK – have done
this show it is possible in the public sector.

93 That is, regardless of which objective Code.Gov decides to
prioritize, the option would be recommended.

Table 6: Options for volumetric decision node

Option

Objectives

1. Gov’t
procurement

2. Innovation
within

government

3. Innovation
from the public

4. Third-party
reuse Total

A. Default to Open 1 1 1 1 4

B. Qualitative Criteria for Open Sourcing 0 0 1 1 2

C. Maintain 20% requirement, with pre-
defined metrics 0 0 0 0 0

D. Maintain 20% requirement, with agency
freedom to define metric 0 0 0 0 0

Table 7: Options for programmatic support decision node

Option

Objectives

1. Gov’t
procurement

2. Innovation
within

government

3. Innovation
from the public

4. Third-party
reuse

Total

A. Employ community managers 0 0 1 1 2

B. Provide community-building training to
agencies

0 0 1 1 2

C. Train government acquisition
employees

1 1 1 1 4

D. Convene Federal CIO Council 1 1 1 1 4

E. Introduce incentives to federal
employees to engage in open source

0 0 1 1 2

F. Publish rankings on agency
performance on user engagement

0 0 1 1 2

G. Create ‘OSS Parachute Team’ 1 1 1 1 4

40

III. PROVIDE
PROGRAMMATIC SUPPORT
FOR AGENCIES

Federal agencies vary significantly in
their capacity to comply with the
Federal Source Code Policy effectively.

Our focus groups with federal employees and
interviews with subject experts revealed that
some agencies have substantial in-house
open source expertise – particularly science-
related agencies, like NASA and the DOD.
Others, however, do not have large
institutional understanding of open source.

This matters. One example of how it
manifests is in licensing. Contributors to the
open source community often elect to work
on a project only if its license ensures it will
not be later sold commercially.94 However, a
number of federal government projects are
released under licenses that would allow for
later commercialization. 95 The reason,
according to several interviewees, is that
procurement functions do not realize the
downstream effects of licensing decisions.96
The result is that engagement is lower than if
alternative licensing had been used.

The interagency component of the Federal
Source Code Policy is beyond the remit of
this research, because we are neither US
citizens nor federal employees. However, in
the course of our research we have
consistently heard that changes to the code
requirements – for example, adjusting the
20% requirement or introducing the
DREAM CODE framework – will not alone
be enough to boost engagement with federal
source code. As John Scott told us, “it’s a

94 Interview with subject matter expert who spoke on
condition of anonymity.

95 Interview with subject matter expert who spoke on
condition of anonymity.

96 Interview with subject matter expert who spoke on
condition of anonymity.

long-term organizational issue – culture
precedes problems.”97

This problem is not unique to the Federal
Source Code Policy. As one commentator on
the federal government’s OSS policy, who
served as a Senior Technical Advisor and
Assistant Commissioner for the US General
Service Administration’s Federal Acquisition
Service Office of Systems Management and
as Executive Director of 18F, writes,

“At some level, this [low] level of compliance
should be expected for any top-down policy.
The reality on the ground is that agencies
almost always struggle to implement
government-wide policies. The incentives
are rarely aligned, the practices and culture
needed to support the policies typically does
not have the level of focus required, and
things just take time (particularly where
there are multiple competing priorities and
pressures and leadership change).
Institutional inertia is a barrier that any
OMB policy must grapple with.”98

Refining the objective of the Federal Source
Code Policy and changing the 20%
requirement are alone unlikely to resolve
these underlying issues. The purpose of this
section is to provide illustrations of the sort
of additional initiatives that Code.Gov would
likely need to launch as part of an Open
Source Policy 2.0. These policy decisions are
beyond the scope of our original research
briefing from Code.Gov – in the following
section, however, we explain why we have
included them as part of our
recommendations.

97 Interview with John Scott.

98 Zvenyach, V. David. “The Trouble with the Federal Source
Code Policy, and What to Do about It: Part One.” Medium, 9
Oct. 2018, medium.com/@vdavez/the-trouble-with-the-
federal-source-code-policy-and-what-to-do-about-it-part-
one-f1f26d0232ab.

mailto:medium.com/@vdavez/the-trouble-with-the-federal-source-code-policy-and-what-to-do-about-it-part-one-f1f26d0232ab
mailto:medium.com/@vdavez/the-trouble-with-the-federal-source-code-policy-and-what-to-do-about-it-part-one-f1f26d0232ab
mailto:medium.com/@vdavez/the-trouble-with-the-federal-source-code-policy-and-what-to-do-about-it-part-one-f1f26d0232ab

41

OPTIONS

Code.Gov should provide new forms of
support to help agencies comply with
Open Source Policy 2.0.

These options are drawn from suggestions
made by our expert interviewees, focus group
participants, and in the literature. They are,
in most cases, not mutually exclusive.
Moreover, they do not form an exhaustive list
of the forms of programmatic support that
Code.Gov could provide to agencies in order
to boost user engagement with federal
repositories.

Nevertheless, we have included these policy
options in order to illustrate the diversity of
initiatives that Code.Gov could take beyond
re-writing the Federal Source Code Policy’s
purpose and volume requirement. Multiple
interviewees said that even if those two
levers were changed, many federal agencies
will still lack the capabilities and the
expertise to increase public engagement.99

This section is included in the report in order
to spark thought about what additional
support Code.Gov can provide. For this
reason, the options below are neither
mutually exclusive nor exhaustive. In the
recommendation section, we show how these
initiatives could be combined in different
ways depending on the overarching purpose
for Open Source Policy 2.0 that Code.Gov
decides on.

Initiatives that Code.Gov could launch in
order to boost agencies’ OSS capabilities and
expertise include the following:

1. Mandate that all federal
agencies employ full-time
community managers. It is
common in private sector
organizations to have a staff member
that manages engagement with a
project's community. This includes
everything from setting the
community rules at the start of

99 Eric Mill was one example of an interviewee who said this.

project to organizing conferences
during the project’s development,
where community members can
engage with the federal government.
These are common practices in
private sector organizations that use
open source well.100

Benefits: This would likely be highly
effective in generating user
engagement. It was one of the most
popular suggestions that appeared in
our research.

Costs: There would be a
considerable financial cost if each of
the >5,000 federal repositories had
their own community member. Even
if each community manager had 100
repositories to oversee, that would
still implies 50 new federal hires.

2. Provide community-building
training to agencies. This could
entail some combination of
workshops and online modules run
by experts at Code.Gov.

It would address the problem that
many agencies do not have sufficient
internal expertise on how to engage
communities.

Benefits: Less costly than hiring
full-time community engagement
managers – while still addressing
agencies’ general lack of competency
in community-building.

Costs: Less effective than hiring full-
time community engagement
managers. It would also entail
financial and administrative costs for
Code.Gov, if they were to manage this
effort.

3. Train government acquisition
employees in ‘Open Source 101’.
A consistent finding in our research is
that many staff in agencies’

100 Interview with John Scott.

42

procurement arms are not well-
versed in open source.

One implication of this is that the
wrong licenses are used for projects,
as mentioned earlier.101

Benefits: Increases the likelihood
that OSS solutions are used to meet
federal requirements (i.e., federal
acquisition employees are less likely
to issue an RfP for a proprietary
solution when a potential open
source solution exists).

This measure would also mean that
more projects use the appropriate
licensing arrangements from the
outset, which increases engagement
over the long-run.

Costs: GSA and/or Code.Gov would
bear the administrative and financial
burden of running these training
programs. It is also not clear how
effective trainings will be; OSS is a
complicated domain and agencies
may require deeper expertise in the
field than workshops can provide.

4. Convene the Federal CIO
Council to lead the design
process for Open Source Policy
2.0.
Since Code.Gov moved to GSA from
the White House, there is a
perception in government and
industry that OSS has fallen off the
federal government’s radar.102

Convening the CIO Council in the
run-up to the August 2019 deadline
would increase the possibility that
resources would be devoted to
exploring institutional ways to

101 Interview with John Scott

102 Interview with industry expert.

103 Nagle, Frank, Learning by Contributing: Gaining
Competitive Advantage Through Contribution to
Crowdsourced Public Goods, Organization Science,

improve the efficacy of the Federal
Source Code Policy.
Benefits: Incurs no direct financial
cost – and, if CIOs engage with the
topic, could bring high-ranking
interest and resources to the redesign
process.

Costs: Low-to-moderate political
feasibility, given the current
Administration’s relative lack of
expressed interest in OSS compared
to other issues in their remit, such as
cybersecurity.

Code.Gov does not have the power to
convene the Federal CIO Council.

5. Introduce incentives for federal
employees to contribute to
open source projects.
Research suggests that organizations
which encourage employees to spend
time working on external open source
projects improve the productivity of
their own open source projects. 103
For agencies with fewer experts in
open source, this may be one way to
boost the skills of federal employees
managing projects.

One way to do this is to permit certain
federal employees to allocate time –
say, several hours a week – to
working on non-government OSS
projects.
Benefits: Increases in-house OSS
expertise without incurring any
direct financial cost.

Costs: Consumes time from federal
employees’ days (which could be

Organization Science, 2018, Vol.29(4), p.569-587 and Senz,
Kristen, The Hidden Benefit of Giving Back to Open Source
Software, HBS Working Knowledge, September 5 2018,
https://hbswk.hbs.edu/item/the-hidden-benefit-of-giving-
back-to-open-source-software.

43

spent working directly on federal OSS
projects).

While research shows that this is a
good way to develop OSS expertise,
the aggregate amount of time
devoted to this initiative could exceed
the cost of hiring full-time OSS
experts within agencies.

6. Publish rankings of agency
performance in user
engagement in open source.

A study of open source across
Spanish city governments found that
publishing rankings of cities’
performance boosted productivity
and community building.104 A similar
interagency approach could have
similar results.

Currently, GSA has a public
dashboard that evaluates agencies’
compliance with the Federal Source
Code Policy. However, this
dashboard does not measure user
engagement and it is relatively hard
to find online. Moreover, agencies are
not ranked against one another.

Adjusting this evaluation process so
that it directly compares agencies
based on user engagement outcomes
could provoke healthy competition
which results in increased user
engagement.

Benefits: No direct financial cost.

Costs: This intervention would likely
be less effective than others. It would
also be an added administrative

104 Merelo-Guervos, Juan-Julian, Blancas, Israel, Arenas,
Maribel G., Tricas, Fernando, Vacas, José Antonio, and Rico,
Nuria, GitHub rankings and its impact on the local free

burden for Code.Gov to monitor and
rank engagement.

7. Create ‘OSS Parachute Team’
that works with agencies that
lack expertise and resources.
Our results in Chapters 3 and 4 found
that some agencies have strong in-
house OSS capabilities. Others,
however, do not.

One solution to this conundrum is for
Code.Gov to create a specialist team
that works with underperforming
agencies – a form of in-government
consultancy. Currently Code.Gov has
one person to do this. A larger team
could provide training and advice
about how to establish OSS projects,
and support community-building
efforts once projects are underway.

Benefits: Targets limited resources
to agencies that most need support.

Costs: Financial cost of hiring
specialist team to work with agencies.

RECOMMENDATION

At a minimum, Code.Gov should
provide training to federal acquisition
employees, push for the Federal CIO
Council to be convened, and consider
launching an OSS parachute team.
These options strictly dominate the other
options regardless of which policy objective
Code.Gov decides to prioritize (Table 7).

If user engagement continues to be a core
focus of the policy, then all of the above
initiatives should be considered. This
recommendation is somewhat endogenous:
We compiled this list of potential initiatives
after asking interviewees, “What practices
could Code.Gov introduce – apart from being
clear about its purpose and changing the
volume requirement – to boost user

software development community, The Winnower
2:e142251.14740, 2015.

44

engagement?” All of them therefore score +1
in the evaluation system.

If Code.Gov decides that user engagement is
not going to be part of Open Source Policy
2.0, then the evaluation in Table 7 is also
helpful: It shows which of the above
initiatives would support the government
procurement and in-government innovation
objectives.

IV. INVESTIGATE OPEN
QUESTIONS RAISED BY THIS
RESEARCH

This report has raised as many
questions as it has answers for the
future of Code.Gov.

Our analysis has provided new insights into
the performance of the Pilot Program since
its inception in August 2016. However, it was
restricted by factors outlined in Chapter 2.

As a result, there are outstanding questions
that should be answered prior to the design
of Open Source 2.0. These are:

1. HOW DOES
ENGAGEMENT VARY BY
LICENSING TYPE?

The type of license a repository uses
can affect the community’s willingness
to engage with it.

The logic is that if a member of the open
source community believes that there is a
chance that their work will later be used for
another party’s commercial gain, they are
less likely to engage with it in the first place.

The scraping tool that we developed for this
analysis was unable to capture the licensing
status of repositories. We were therefore
unable to conduct this analysis. However, it
may be an important consideration in the
redesign of the policy. If the empirics
confirm that top-performing repositories
overwhelmingly use a specific licensing
format, then Code.Gov may consider

mandating in the future that all federal
source code uses that format. If the empirics
do not support this hypothesis, then the
analysis may help debunk a common myth
that has been repeatedly raised in our
conversations for this project.

2. HOW DOES
REUSABILITY CORRELATE
WITH ENGAGEMENT?

Multiple sources told us that a
repository’s reusability drives
engagement with repositories.

We were unable to test this hypothesis:
Because neither of us are expert coders, we
could not assess the modularity and reuse
potential of repositories.

Code.gov should conduct an empirical
analysis of this hypothesis. Our quantitative
findings provide the roadmap for how to do
this. A random sample of repositories from
different quintiles (for example) could be
selected. An expert coder could then parse
these repositories to determine how
complete, self-contained and usable they are.

Our analysis assumes that there would be a
statistically significant difference in the
number of repositories meeting the standard
of completion, self-containedness and
usability across quintiles – that is, that top-
performing repositories would have a larger
share of complete, self-contained and usable
code than lower-performing repositories.

3. WHO IS ENGAGING
WITH FEDERAL
REPOSITORIES?

We have not been able to analyze the
community of individuals engaging
with federal source code.
The scraping tool that we developed with
Code.Gov could not collect data on the users
of federal repositories. This was due to
restrictions with GitHub’s API and privacy
concerns.

45

Finding out who engages with federal source
code matters. If most users are expert coders
affiliated with the federal government (for
example, technology consultants), then
Code.Gov would be able to determine that
the primary benefit of the Pilot Program is
that it has facilitated easier improvement in
the quality of federal code.

If, however, the majority are amateur coders
or other organizations seeking to repurpose
code for their own use, then it might be
acceptable for projects to be developed in
private before being released as open source
upon completion.

Our interviews revealed that there is already
work being done on this question. The
Laboratory for Innovation Science at
Harvard (LISH), for example, is working in
conjunction with the Linux Foundation to
conduct a census of all open source projects
and their usage. We have had a preliminary
conversation with the Linux Foundation
about this work; there may be opportunities
for Code.Gov to cooperate with LISH in
order to better understand the user base of
federal repositories.

4. WHAT FINANCIAL
SAVINGS HAS THE PILOT
PROGRAM GENERATED?

We have not focused on the
commercial aspects of the Pilot
Program.

However, the financial case for OSS was one
reason that the Obama Administration
launched the Pilot Program.

For example, Objective 3 – harnessing public
contributions to government source code –
might have indirectly resulted in savings,
since the developer community was used to
make improvements to code instead of
contractors.

V. POLICY ARCHETYPES

We have made the above
recommendations based on the
assumption that user engagement will
continue to be a part of Open Source
Policy 2.0. In this section, we provide
archetypes to illustrate how the
recommendations might change if
Code.Gov opts to prioritize different
objectives.
The purpose is to illustrate the downstream
implications of choosing a specific policy
objective. We believe that there is an
underappreciation of the impact of that
decision on subsequent policy design. By
providing these archetypes, we hope to
demonstrate the extent to which the initial
choice of objective will impact the shape of
Open Source Policy 2.0. While each
archetype includes ‘Default to Open,’ the
other policy decisions change depending on
the purpose.

1. GOVERNMENT
PROCUREMENT

Purpose: To create cost savings and
improve procurement practices by avoiding
“duplicative custom software purchases”
amongst agencies and vendor lock-in.

Decision 1: Default to open. If politically
unfeasible, focus on maximizing how much
source code agencies release.

Decision 2: Include provisions for training
government acquisition, convening Federal
CIO Council, and a “OSS Parachute Team.”

Decision 3: Prioritize analysis of financial
savings from Federal Source Code Policy.

2. IN-GOVERNMENT
INNOVATION

Purpose: To fuel innovation within
government software engineering by
promoting “collaboration across Federal
agencies” on projects.

46

Decision 1: Default to open. If politically
unfeasible, focus on maximizing how much
source code agencies release.

Decision 2: Include provisions for training
government acquisition, convening Federal
CIO Council, and a “OSS Parachute Team.”

Decision 3: Prioritize analysis of how
licenses impact contributions from
developer community.

3. USER CONTRIBUTIONS

Purpose: To encourage qualitative
improvement of federal source code by the
public so it is “reliable and effective in
furthering our national objectives.”

Decision 1: Default to open. If politically
unfeasible, focus on maximizing how much
source code agencies release.

Decision 2: Include provisions for
community-building training with all
agencies, advocate for hiring full-time
community managers, and publish regularly

updated agency rankings on user
engagement in open source.

Decision 3: Prioritize analysis of license
type and of user demographics.

4. THIRD-PARTY REUSE

Purpose: To honor public ownership of the
code and promote third party reuse, by
providing the public with “the People’s Code”
that their taxpayer dollars fund.

Decision 1: Default to open. If politically
unfeasible, focus on maximizing how much
source code agencies release.

Decision 2: Include provisions for
community building trainings with all
agencies, advocate for hiring full-time
community managers, and publish regularly
updated agency rankings on user
engagement in open source.

Decision 3: Prioritize analysis of user
demographics.

47

APPENDIX
A. RELEVANT SECTION FROM FEDERAL SOURCE CODE POLICY

Section 5 (“Open Source Software”) of the Federal Source Code Policy, which
outlines the Pilot Program

5. Open Source Software

5.1 Pilot Program: Publication of Custom-Developed Code as OSS

Each agency shall release as OSS at least 20 percent of its new custom-developed code29 each
year for the term of the pilot program. As discussed above, agencies must obtain sufficient rights
to custom-developed code to fulfill the open source release objectives of this policy’s pilot
program.

When deciding which custom-developed code projects to release, each agency should prioritize
the release of custom-developed code that it considers potentially useful to the broader
community. Agencies should calculate the percentage of source code released using a consistent
measure—such as real or estimated lines of code, number of self-contained modules, or cost—that
meets the intended objectives of this requirement. Additional information regarding how best to
measure source code will be provided on Code.gov.

Although the minimum requirement for OSS release is 20 percent of custom-developed code,
agencies are strongly encouraged to release as much custom-developed code as possible to further
the Federal Government’s commitment to transparency, participation, and collaboration.

OMB expects all agencies to satisfy the requirements of this pilot program without exception.
Agencies should—as part of their selection of custom-developed code to be released as OSS—
refrain from selecting code that would fall under the exceptions outlined in Section 6 of this policy.
In the event that an agency’s CIO believes that the agency cannot satisfy the 20 percent
requirement of the OSS pilot program (e.g., because releasing code as OSS would create an
identifiable risk to the detriment of national security), the CIO should consult with OMB.

Unless extended or supplanted by OMB through the issuance of further policy, the pilot program
under this sub-section will expire three years (36 months) after the publication date of this policy;
however, the rest of the Federal Source Code Policy will remain in effect. No later than two years
after the publication date of this policy, OMB shall evaluate pilot results and consider whether to
allow the pilot program to expire or to issue a subsequent policy to continue, modify, or increase
the minimum requirements of the pilot program.

Within 120 days of the publication date of this policy, OMB shall develop metrics to assess the
impact of the pilot program. Additional information on these topics will be available on Code.gov.

5.2 Participation in the Open Source Community

When agencies release custom-developed source code as OSS to the public, they should develop
and release the code in a manner that (1) fosters communities around shared challenges, (2)
improves the ability of the OSS community to provide feedback on, and make contributions to,
the source code, and (3) encourages Federal employees and contractors to contribute back to the
broader OSS community by making contributions to existing OSS projects. In furtherance of this
strategy, agencies should comply with the following principles:

48

Leverage Existing Communities: Whenever possible, teams releasing custom-developed
code to the public as OSS should appropriately engage and coordinate with existing communities
relevant to the project. Government agencies should only develop their own communities when
existing communities do not satisfy their needs.

Engage in Open Development: Software that is custom-developed for or by agencies should,
to the extent possible and appropriate, be developed using open development practices. These
practices provide an environment in which OSS can flourish and be repurposed. This principle,
as well as the one below for releasing source code, include distributing a minimum viable product
as OSS; engaging the public before official release;30 and drawing upon the public’s knowledge
to make improvements to the project.

Adopt a Regular Release Schedule: In instances where software cannot be developed using
open development practices, but is otherwise appropriate for release to the public, agencies
should establish an incremental release schedule to make the source code and associated
documentation available for public use.

Engage with the Community: Similar to the requirement in the Administration’s Open Data
Policy, agencies should create a process to engage in two-way communication with users and
contributors to solicit help in prioritizing the release of source code and feedback on the agencies’
engagement with the community.

Consider Code Contributions: One of the potential benefits of OSS lies within the
communities that grow around OSS projects, whereby any party can contribute new code, modify
existing code, or make other suggestions to improve the software throughout the software
development lifecycle. Communities help monitor changes to code, track potential errors and
flaws in code, and other related activities. These kinds of contributions should be anticipated and,
where appropriate, considered for integration into custom-developed Government software or
associated materials.

Documentation: It is important to provide OSS users and contributors with adequate
documentation of source code in an effort to facilitate use and adoption. Agencies must ensure
that their repositories include enough information to allow reuse and participation by third
parties. In participating in community-maintained repositories, agencies should follow
community documentation standards. At a minimum, OSS repositories maintained by agencies
must include the following information:

x Status of software (e.g., prototype, alpha, beta, release, etc.);
x Intended purpose of software;
x Expected engagement level (i.e., how frequently the community can expect agency

activity);
x License details; and
x Any other relevant technical details on how to build, make, install, or use the software,

including dependencies (if applicable).

49

B. RAW CODE USED TO GENERATE DATA

We worked with the Code.Gov team – particularly Joe Castle and Froilan Irizarry – to develop
custom code that pulls data about federal repositories from GitHub. This code is open source
and available at the links listed below.

i. Repository-level data

Available at https://github.com/froi/us-federal-gov-github-orgs-
stats/blob/master/graphql/repo_data.gql

https://github.com/froi/us-federal-gov-github-orgs-stats/blob/master/graphql/repo_data.gql
https://github.com/froi/us-federal-gov-github-orgs-stats/blob/master/graphql/repo_data.gql

50

ii. Issue and pull request data

Available at https://github.com/froi/us-federal-gov-github-orgs-
stats/blob/master/graphql/issues_data.gql

https://github.com/froi/us-federal-gov-github-orgs-stats/blob/master/graphql/issues_data.gql
https://github.com/froi/us-federal-gov-github-orgs-stats/blob/master/graphql/issues_data.gql

51

iii. Star and fork data

Available at https://github.com/froi/us-federal-gov-github-orgs-
stats/blob/master/graphql/stars_forks_data.gql

https://github.com/froi/us-federal-gov-github-orgs-stats/blob/master/graphql/stars_forks_data.gql
https://github.com/froi/us-federal-gov-github-orgs-stats/blob/master/graphql/stars_forks_data.gql

52

C. RANKINGS OF AGENCIES BY ENGAGEMENT

Agencies, sorted by total number of engagements

Rank Agency No.
engagements

No.
repos

Average no.
engagements
per
repository

1 NASA 56,449 331 0.00586

2 Department of Defense 37,071 360 0.00971

3 General Services Administration 22,695 1,098 0.04838

4 Department of the Interior 16,482 781 0.04739

5 Department of Health and Human Services 11,222 274 0.02442

6 Department of Commerce 10,090 254 0.02517

7 Department of Energy 4,971 217 0.04365

8 Department of State 3,102 150 0.04836

9 Department of Veterans Affairs 3,085 146 0.04733

10 Environmental Protection Agency 2,105 105 0.04988

11 Department of Labor 1,471 63 0.04283

12 Department of the Treasury 1,410 19 0.01348

13 Department of Justice 1,404 31 0.02208

14 Department of Homeland Security 1,205 10 0.0083

15 US Department of Agriculture 995 31 0.03116

16 Office of Personnel Management 930 4 0.0043

17 Department of Transportation 555 26 0.04685

18 Small Business Administration 500 11 0.022

19 Department of Education 123 4 0.03252

20 United States Agency for International Development 91 5 0.05495

21 Social Security Administration 77 2 0.02597

22 National Science Foundation 5 2 0.4

53

Agencies, sorted by average engagements per repository

Rank Agency No.
engagements

No.
repos

Average no.
engagements
per
repository

1 National Science Foundation 5 2 0.4

2 United States Agency for International Development 91 5 0.055

3 Environmental Protection Agency 2,105 105 0.050

4 General Services Administration 22,695 1,098 0.048

5 Department of State 3,102 150 0.048

6 Department of the Interior 16,482 781 0.047

7 Department of Veterans Affairs 3,085 146 0.047

8 Department of Transportation 555 26 0.047

9 Department of Energy 4,971 217 0.044

10 Department of Labor 1,471 63 0.043

11 Department of Education 123 4 0.033

12 US Department of Agriculture 995 31 0.031

13 Social Security Administration 77 2 0.026

14 Department of Commerce 10,090 254 0.025

15 Department of Health and Human Services 11,222 274 0.024

16 Department of Justice 1,404 31 0.022

17 Small Business Administration 500 11 0.022

18 Department of the Treasury 1,410 19 0.013

19 Department of Defense 37,071 360 0.010

20 Department of Homeland Security 1,205 10 0.010

21 NASA 56,449 331 0.006

22 Office of Personnel Management 930 4 0.004

54

D. RANKINGS OF AGENCY RESPONSIVENESS

Table: Number and status of Issues flagged

Agency Closed Open Total % remaining open

Department of the Treasury 7 12 19 63%

USAID 15 18 33 55%

Department of Veterans Affairs 203 243 446 54%

General Services Administration 1,074 1,015 2,089 49%

Small Business Administration 12 11 23 48%

Environmental Protection Agency 432 390 822 47%

Department of Justice 357 270 627 43%

Department of Education 46 29 75 39%

NASA 1,815 1,057 2,872 37%

Department of the Interior 2,718 1,434 4,152 35%

Department of Homeland Security 518 270 788 34%

Department of Labor 393 180 573 31%

Department of Health and Human
Services

738 332 1,070 31%

Department of Commerce 1,356 574 1,930 30%

Department of State 941 391 1,332 29%

Department of Energy 831 320 1,151 28%

Department of Defense 2,531 822 3,353 25%

US Department of Agriculture 580 152 732 21%

National Science Foundation 177 43 220 20%

Social Services Administration 34 8 42 19%

Department of Transportation 107 23 130 18%

Office of Personnel Management 884 92 976 9%

55

Agency Closed Merged Open % Acted on Total

Office of Personnel Management 5 19 - 100% 24

USAID - 7 - 100% 7

Small Business Administration 33 485 2 100% 520

Department of Justice 83 464 6 99% 553

Department of Transportation 55 249 4 99% 308

Department of Labor 24 197 3 99% 224

Department of the Treasury 133 830 20 98% 983

Department of State 78 1,013 23 98% 1,114

Department of Commerce 221 2,278 55 98% 2,554

Department of Health and Human
Services

194 2,782 68 98% 3,044

Environmental Protection Agency 23 230 7 97% 260

Department of the Interior 281 4,238 133 97% 4,652

Department of Defense 364 3,514 140 97% 4,018

NASA 325 2,367 121 96% 2,813

National Science Foundation 5 57 3 95% 65

Department of Homeland Security 23 180 10 95% 213

Department of Veterans Affairs 102 1,369 83 95% 1,554

General Services Administration 304 2,719 224 93% 3,247

US Department of Agriculture 1 49 4 93% 54

Department of Energy 50 830 80 92% 960

Department of Education - 8 1 89% 9

56

BIBLIOGRAPHY
WORKS CITED

“Affiliate Membership Qualifications and Criteria.” Affiliate Membership Qualifications and
Criteria | Open Source Initiative, opensource.org/AffiliateRequirements.

 “Improving the Acquisition and Management of Common Information Technology: Software
Licensing”. Office of Mgmt. & Budget, Exec. Office of the President, June 2, 2016. Available at:
https://obamawhitehouse.archives.gov/sites/default/files/omb/memoranda/2016/m-16-
12_1.pdf.

“Measuring Source Code”, Code.Gov, https://code.gov/about/open-source/measuring-code.’

“Data.ca.gov.” Data.ca.gov, data.ca.gov/.

“Dwyl/Repo-Badges.” GitHub, 29 Nov. 2018, github.com/dwyl/repo-badges.

“Making Source Code Open and Reusable.” GOV.UK, www.gov.uk/service-
manual/technology/making-source-code-open-and-reusable.

“Metrics With Greater Utility: The Community Manager Use Case.” CHAOSS, 25 Feb. 2019,
chaoss.community/news/2018/11/16/metrics-with-greater-utility-the-community-manager-
use-case/.

“Open Data | Open Data NY.” State of New York, data.ny.gov/.

“Project Interoperability.” Project Interoperability, project-interoperability.github.io/.

“Proprietary Software vs. Open Source - The Hidden Costs.” Trellon,
trellon.com/content/blog/proprietary-software-vs-open-source-hidden-costs.

“The People's Code.” National Archives and Records Administration, National Archives and
Records Administration, obamawhitehouse.archives.gov/blog/2016/08/08/peoples-code.

“Three-Step Software Solutions Analysis.” Three-Step Software Solutions Analysis,
policy.cio.gov/source-code/three-step-software-solutions-analysis/.

Balter, Ben. Towards a More Agile Government. 29 Nov. 2011,
ben.balter.com/2011/11/29/towards-a-more-agile-government/#fn:2.

Fogel, Karl, Producing Open Source Software: How to Run a Successful Free Software Project,
Version 2.3098, Available online at http://producingoss.com.

Goldstein, Phil, “Federal Agencies Will Be Required to More Accurately Track Software
Licenses.” Technology Solutions That Drive Government, 24 Aug. 2016,
fedtechmagazine.com/article/2016/08/federal-agencies-will-be-required-more-accurately-
track-software-licenses.

Government Digital Service. “8. Make All New Source Code Open.” GOV.UK, GOV.UK, 29 June
2016, www.gov.uk/service-manual/service-standard/make-all-new-source-code-open.

https://obamawhitehouse.archives.gov/sites/default/files/omb/memoranda/2016/m-16-12_1.pdf
https://obamawhitehouse.archives.gov/sites/default/files/omb/memoranda/2016/m-16-12_1.pdf
http://www.gov.uk/service-manual/technology/making-source-code-open-and-reusable
http://www.gov.uk/service-manual/technology/making-source-code-open-and-reusable
http://producingoss.com/

57

Kesan, Jay P. & Shas, Rajiv C. Shah, Shaping Code, Harvard Journal of Law & Technology,
Volume 18, Number 2 Spring 2005 pp 320-398

Kuldell, Heather. “It's Official: MEGABYTE Act Signed into Law.” Nextgov.com, Nextgov, 28
Nov. 2017, www.nextgov.com/cio-briefing/2016/08/its-official-megabyte-act-signed-
law/130391/.

McDonald, Nora, and Goggins, Sean, Performance and Participation in Open Source Software
on GitHub, CHI EA '13 CHI '13 Extended Abstracts on Human Factors in Computing Systems
Pages 139-144

McKinsey and Company, Big data: The next frontier for innovation, competition, and
productivity (2011). Available at
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/
Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_da
ta_exec_summary.ashx

Merelo-Guervos, Juan-Julian, Blancas, Israel, Arenas, Maribel G., Tricas, Fernando, Vacas, José
Antonio, and Rico, Nuria, GitHub rankings and its impact on the local free software
development community, The Winnower 2:e142251.14740, 2015.

Mill, Eric, et al. “Digital Service Delivery | How We Built Analytics.usa.gov.” 18F, 19 Mar. 2015,
18f.gsa.gov/2015/03/19/how-we-built-analytics-usa-gov/.

Nagle, Frank, Learning by Contributing: Gaining Competitive Advantage Through Contribution
to Crowdsourced Public Goods, Organization Science, Organization Science, 2018, Vol.29(4),
pp. 569-587.

Ndenga, Malanga Kennedy, Jean, Mehat, Ganchev, Ivaylo, and Franklin, Wabwoba Assessing
Quality of Open Source Software Based on Community Metrics, International Journal of
Software Engineering and Its Applications, (2015) 9:12, 337-348.

Roberts, Jeffrey A., Hann, Il-Horn, and Slaughter, Sandra A., Understanding the Motivations,
Participation, and Performance of Open Source Software Developers: A Longitudinal Study of
the Apache Projects, Management Science Vol. 52, No. 7, Open Source Software (Jul., 2006),
pp. 984-999.

Rubens, Paul. “Open Source Code Contains Fewer Defects, But There's a Catch.” CIO, CIO, 18
Nov. 2014, www.cio.com/article/2847880/open-source-code-contains-fewer-defects-but-
theres-a-catch.html.

Scott, Tony, U.S. Chief Information Officer. “The People's Code.” National Archives and
Records Administration, National Archives and Records Administration, 2016,
obamawhitehouse.archives.gov/blog/2016/08/08/peoples-code.

Senz, Kristen, The Hidden Benefit of Giving Back to Open Source Software, HBS Working
Knowledge, September 5 2018, https://hbswk.hbs.edu/item/the-hidden-benefit-of-giving-back-
to-open-source-software.

Shipman, Anna. “Don't Be Afraid to Code in the Open: Here's How to Do It Securely.”
Technology in Government, gdstechnology.blog.gov.uk/2017/09/27/dont-be-afraid-to-code-in-
the-open-heres-how-to-do-it-securely/.

https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_exec_summary.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_exec_summary.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_exec_summary.ashx
https://hbswk.hbs.edu/item/the-hidden-benefit-of-giving-back-to-open-source-software
https://hbswk.hbs.edu/item/the-hidden-benefit-of-giving-back-to-open-source-software

58

Shipman, Anna. “The Benefits of Coding in the Open.” Government Digital Service,
gds.blog.gov.uk/2017/09/04/the-benefits-of-coding-in-the-open/.

Sushchenia, Iryna and Grönlund, Åke, Organizational measures to stimulate user engagement
with open data, Transforming Government: People, Process and Policy Vol. 9 No. 2, 2015 pp.
181-206

Tomassetti, Federico , and Torchiano, Marco, An Empirical Assessment of Polyglot-ism in
GitHub - EASE ’14, May 13 - 14 2014.

U.S. Department of Defense. “Contracts for January 11, 2019.” U.S. Department of Defense,
dod.defense.gov/News/Contracts/Contract-View/Article/1730557//.

Zorz, Zeljka. “The Percentage of Open Source Code in Proprietary Apps Is Rising.” Help Net
Security, 22 May 2018, www.helpnetsecurity.com/2018/05/22/open-source-code-security-
risk/.

Zvenyach, V. David. “The Trouble with the Federal Source Code Policy, and What to Do about It:
Part One.” Medium, 9 Oct. 2018, medium.com/@vdavez/the-trouble-with-the-federal-source-
code-policy-and-what-to-do-about-it-part-one-f1f26d0232ab.

Zvenyach, V. David. “The Trouble with the Federal Source Code Policy, and What to Do about It:
Part One.” Medium, 9 Oct. 2018, medium.com/@vdavez/the-trouble-with-the-federal-source-
code-policy-and-what-to-do-about-it-part-one-f1f26d0232ab.

mailto:medium.com/@vdavez/the-trouble-with-the-federal-source-code-policy-and-what-to-do-about-it-part-one-f1f26d0232ab
mailto:medium.com/@vdavez/the-trouble-with-the-federal-source-code-policy-and-what-to-do-about-it-part-one-f1f26d0232ab

59

WORKS CONSULTED

"Apache Way." Apache Foundation, https://www.apache.org/foundation/how-it-works.html.

"Open Source Guides", GitHub, https://opensource.guide/best-practices/.

"Open Source”, Google, https://opensource.google.com/docs/.

“Best Practices for Open Source in Government (Using GitHub).” DigitalGov, 6 Nov. 2013,
digital.gov/2013/11/06/github-for-government/.

“Best Practices”, OpenOffice, https://www.openoffice.org/docs/bestpractices.html.en.

“Curriculum.” OpenChain, www.openchainproject.org/curriculum.

“Open Source for America.” Open Source for America, opensourceforamerica.org/.

“Tools.” Codice, codice.org/tools.html.

Begel, Andrew, Bosch, Jan and Storey, Margaret-Anne, Social Networking Meets Software
Development: Perspectives from GitHub, MSDN, Stack Exchange, and TopCoder, IEEE
Software, Volume: 30 , Issue: 1, Jan.-Feb. 2013.

Biazzini, Marco, and Baudry, Benoit, "May the fork be with you": novel metrics to analyze
collaboration on GitHub, WETSoM 2014 Proceedings of the 5th International Workshop on
Emerging Trends in Software Metrics Pages 37-43, Available at:
https://dl.acm.org/citation.cfm?id=2593875

Blair, Anthony L., Best Practices: Open Source Curriculum, The Journal of Continuing Higher
Education, 54:1, 28-33, 2006.

English, R. and Schweik, C.M. 2007. "Identifying Success and Abandonment of Free/Libre and
Open Source (FLOSS) Commons: A Preliminary Classification of Sourceforge.net projects."
Upgrade: The European Journal for the Informatics Professional. Vol. VIII, Issue no. 6
(December). Available at http://www.upgrade-cepis.com/issues/2007/6/upg8-
6English_Schweik_v2.pdf

Feller, Joe, Fitzgerald, Brian, Hissam, Scott and Lakhani, Karim R., eds. Perspectives on Free and
Open Source Software. Cambridge: MIT Press, 2005.

Gustafson, Britta, and Will Slack. “Digital Service Delivery | Facts about Publishing Open Source
Code in Government.” 18F, 8 Aug. 2016, 18f.gsa.gov/2016/08/08/facts-about-publishing-open-
source-code-in-government/.

Harhoff, Dietmar and Lakhani, Karim R. , eds. Revolutionizing Innovation: Users, Communities,
and Open Innovation. Cambridge, MA: MIT Press, 2016.

https://urldefense.proofpoint.com/v2/url?u=https-3A__www.apache.org_foundation_how-2Dit-2Dworks.html&d=DwMFaQ&c=WO-RGvefibhHBZq3fL85hQ&r=yHoBR3EQLqB92gbUpLXyPE37vPnx7CRGLksXpjpJJBY&m=SIXKqNarwQTTlh1wuB-5EGik4UM2y7z2mgMzOssQwoo&s=URR6GWggLdLMNZbai5ygy7WMPvp6c48NN1vvpUL0-Kw&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__opensource.guide_best-2Dpractices_&d=DwMFaQ&c=WO-RGvefibhHBZq3fL85hQ&r=yHoBR3EQLqB92gbUpLXyPE37vPnx7CRGLksXpjpJJBY&m=SIXKqNarwQTTlh1wuB-5EGik4UM2y7z2mgMzOssQwoo&s=WRkVO68S5CVutvBErZQtcLxwFZ6HjG6XBd4WbVx0_MI&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__opensource.google.com_docs_&d=DwMFaQ&c=WO-RGvefibhHBZq3fL85hQ&r=yHoBR3EQLqB92gbUpLXyPE37vPnx7CRGLksXpjpJJBY&m=SIXKqNarwQTTlh1wuB-5EGik4UM2y7z2mgMzOssQwoo&s=VFFtZfK026lQzV7h3TBWjzlsS98bynkm75fT-BGR4Ow&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.openoffice.org_docs_bestpractices.html.en&d=DwMFaQ&c=WO-RGvefibhHBZq3fL85hQ&r=yHoBR3EQLqB92gbUpLXyPE37vPnx7CRGLksXpjpJJBY&m=SIXKqNarwQTTlh1wuB-5EGik4UM2y7z2mgMzOssQwoo&s=_nJ2secuTKBUAAHs7tyVaDiHJsjSF7juisGafaZ3BDs&e=
https://word-edit.officeapps.live.com/we/www.openchainproject.org/curriculum
https://dl.acm.org/citation.cfm?id=2593875
http://www.upgrade-cepis.com/issues/2007/6/upg8-6English_Schweik_v2.pdf
http://www.upgrade-cepis.com/issues/2007/6/upg8-6English_Schweik_v2.pdf
http://www.hbs.edu/faculty/product/22225
http://www.hbs.edu/faculty/product/22225

60

Jarczyk O., Gruszka B., Jaroszewicz S., Bukowski L., Wierzbicki A. (2014) GitHub Projects.
Quality Analysis of Open-Source Software. In: Aiello L.M., McFarland D. (eds) Social
Informatics. SocInfo 2014. Lecture Notes in Computer Science, vol 8851, 2014.

Weber, Steven, The Success of Open Source, Harvard University Press, 2004

West, Joel, and Lakhani, Karim R. . "Getting Clear About Communities in Open Innovation."
Industry and Innovation 15, no. 2 (April 2008).

http://www.hbs.edu/faculty/product/32556

61

IMAGE CREDITS

All images have with non-commercial reuse licenses. They are available at:

x Chapter 1 - https://www.flickr.com/photos/hackny/6890140478

x Chapter 2 -
https://commons.wikimedia.org/wiki/File:Wikimedia_Hackathon_2013,_Amsterdam_
-_Flickr_-_Sebastiaan_ter_Burg_(28).jpg

x Chapter 3 - https://www.pexels.com/photo/two-women-looking-at-the-code-at-laptop-
1181263/

x Chapter 4 - https://media.defense.gov/2015/Oct/14/2001299878/600/400/0/140610-
Z-PA893-125.JPG

x Chapter 5 - https://pxhere.com/en/photo/7742

